Allocating multiple defensive resources in a zero-sum game setting
暂无分享,去创建一个
[1] A Charnes,et al. Constrained Games and Linear Programming. , 1953, Proceedings of the National Academy of Sciences of the United States of America.
[2] D. W. Blackett,et al. Some blotto games , 1954 .
[3] A. Tucker,et al. Linear Inequalities And Related Systems , 1956 .
[4] P. Wolfe. 9 . Determinateness of Polyhedral Games , 1957 .
[5] G. Dantzig. Discrete-Variable Extremum Problems , 1957 .
[6] D. H. Martin. On the continuity of the maximum in parametric linear programming , 1975 .
[7] H. Luss. Minimax resource allocation problems: Optimization and parametric analysis , 1992 .
[8] S. Newell,et al. Winner Takes all , 1996 .
[9] Naoki Katoh,et al. Resource Allocation Problems , 1998 .
[10] P. Pardalos,et al. Handbook of Combinatorial Optimization , 1998 .
[11] Hanan Luss,et al. On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach , 1999, Oper. Res..
[12] Christos H. Papadimitriou,et al. Algorithms, games, and the internet , 2001, STOC '01.
[13] L. Berkovitz. Convexity and Optimization in Rn , 2001 .
[14] Christos H. Papadimitriou,et al. Algorithms, Games, and the Internet (Extended Abstract) , 2001 .
[15] David P. Morton,et al. George B Dantzig, 1914–2005 , 2005, J. Oper. Res. Soc..
[16] Richard W. Cottle,et al. George B. Dantzig: Operations Research Icon , 2005, Oper. Res..
[17] B. Roberson. The Colonel Blotto game , 2006 .
[18] R. Powell. Defending against Terrorist Attacks with Limited Resources , 2007, American Political Science Review.
[19] Rae Zimmerman,et al. Optimal Resource Allocation for Defense of Targets Based on Differing Measures of Attractiveness , 2008, Risk analysis : an official publication of the Society for Risk Analysis.
[20] Gregory Levitin,et al. Intelligence and impact contests in systems with redundancy, false targets, and partial protection , 2009, Reliab. Eng. Syst. Saf..
[21] Uriel G. Rothblum,et al. Nature plays with dice - terrorists do not: Allocating resources to counter strategic versus probabilistic risks , 2009, Eur. J. Oper. Res..
[22] Hanan Luss. Equitable Resource Allocation: Models, Algorithms and Applications , 2012 .
[23] Uriel G. Rothblum,et al. A Stochastic Competitive R&D Race Where "Winner Takes All" , 2012, Oper. Res..
[24] Å. Lindahl. Convexity and Optimization , 2015 .