Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET

Abstract. This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  J. Greenberg Scattering by Nonspherical Particles , 1960 .

[3]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[4]  Valentin F. Turchin,et al.  The use of mathematical-statistics methods in the solution of incorrectly posed problems , 1971 .

[5]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[6]  M. McCormick,et al.  Methodology for error analysis and simulation of lidar aerosol measurements. , 1979, Applied optics.

[7]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[8]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[9]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[10]  J. Barnett,et al.  Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0 - 120 km , 1990 .

[11]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[12]  Kengo Iokibe,et al.  Lidar network observation of Asian dust (Kosa) in Japan , 1998, Asia-Pacific Environmental Remote Sensing.

[13]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[14]  Larry D. Travis,et al.  Light Scattering by Nonspherical Particles , 1998 .

[15]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[16]  ProblemsPer Christian HansenDepartment The L-curve and its use in the numerical treatment of inverse problems , 2000 .

[17]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[18]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[19]  J. Biele,et al.  Polarization Lidar: Correction of instrumental effects. , 2000, Optics express.

[20]  Hester Volten,et al.  Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm , 2001 .

[21]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[22]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[23]  Brent N. Holben,et al.  Methodology to retrieve atmospheric aerosol parameters by combining ground-based measurements of multiwavelength lidar and sun sky-scanning radiometer , 2002, Atmospheric and Ocean Optics.

[24]  Albert Ansmann,et al.  Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer , 2003 .

[25]  Philippe Goloub,et al.  Methodology and sample results of retrieving aerosol parameters by combined multiwavelength lidar and Sun-sky scanning measurements , 2004, Atmospheric and Ocean Optics.

[26]  B. Holben,et al.  Studying Altitude Profiles of Atmospheric Aerosol Parameters by Combined Multi-Wavelength LIDAR and Sun Sky Radiance Measurements , 2004 .

[27]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004, Applied optics.

[28]  Oleg Dubovik,et al.  Optimization of Numerical Inversion in Photopolarimetric Remote Sensing , 2004 .

[29]  Mark R. Schoeberl,et al.  Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties , 2004 .

[30]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[31]  D. Müller,et al.  Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis. , 2005, Applied optics.

[32]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[33]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[34]  K. Strawbridge,et al.  Trans‐Pacific transport of Saharan dust to western North America: A case study , 2007 .

[35]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[36]  A. Pietruczuk,et al.  Properties of fire smoke in Eastern Europe measured by remote sensing methods , 2007, SPIE Remote Sensing.

[37]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[38]  Max Frioud,et al.  Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006 , 2007 .

[39]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[40]  Juan Cuesta,et al.  Synergetic technique combining elastic backscatter lidar data and sunphotometer AERONET inversion for retrieval by layer of aerosol optical and microphysical properties. , 2008, Applied optics.

[41]  Albert Ansmann,et al.  Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .

[42]  R. Engelmann,et al.  Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest , 2009 .

[43]  V. Freudenthaler,et al.  EARLI09 - DIRECT INTERCOMPARISON OF ELEVEN EARLINET LIDAR SYSTEMS , 2009 .

[44]  V. Ramaswamy,et al.  Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: Comparison with other measurements and utilization to evaluate GCM output , 2009 .

[45]  P. D. Girolamo,et al.  APPLICATION OF RANDOMLY ORIENTED SPHEROIDS FORRETRIEVAL OF DUST PARTICLE PARAMETERS FROM MULTIWAVELENGTH LIDAR MEASUREMENTS , 2010 .

[46]  Zhengqiang Li,et al.  Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements , 2009 .

[47]  V. Ramaswamy,et al.  Retrieving the composition and concentration of aerosols over the Indo‐Gangetic basin using CALIOP and AERONET data , 2009 .

[48]  V. Freudenthaler,et al.  The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany , 2010 .

[49]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[50]  A. Doicu,et al.  Numerical Regularization for Atmospheric Inverse Problems , 2010 .

[51]  K. Strawbridge,et al.  Californian forest fire plumes over Southwestern British Columbia: lidar, sunphotometry, and mountaintop chemistry observations , 2010 .

[52]  Josef Gasteiger,et al.  Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements , 2010 .

[53]  Albert Ansmann,et al.  Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010 , 2011 .

[54]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[55]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[56]  P. Seifert,et al.  Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes , 2012 .

[57]  A. Stohl,et al.  Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010 , 2012 .

[58]  Michaël Sicard,et al.  Algorithm and software for the retrieval of vertical aerosol properties using combined lidar/radiometer data: dissemination in EARLINET , 2012 .

[59]  T. Nakajima,et al.  Development of a new data-processing method for SKYNET sky radiometer observations , 2012 .

[60]  Comissão Nacional de Energia,et al.  LIDAR COMMUNITY IN LATIN AMERICA: A DECADE OF CHALLENGES AND SUCCESSES , 2012 .

[61]  Albert Ansmann,et al.  Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. , 2013, Applied optics.

[62]  D. Tanré,et al.  Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm , 2013 .

[63]  Doina Nicolae,et al.  Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations , 2013 .

[64]  A. Stohl,et al.  Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajokull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements , 2013 .

[65]  Benjamin Thomas,et al.  Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix , 2013 .

[66]  P. Seifert,et al.  Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust , 2013 .

[67]  José María Baldasano Recio,et al.  Application of a synergetic lidar and sunphotometer algorithm for the characterization of a dust event over Athens, Greece , 2013 .

[68]  D. Nicolae,et al.  Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. , 2014, The Science of the total environment.

[69]  A. Ansmann,et al.  Retrieving aerosol microphysical properties by Lidar‐Radiometer Inversion Code (LIRIC) for different aerosol types , 2014 .

[70]  Oleg Dubovik,et al.  GRASP: a versatile algorithm for characterizing the atmosphere , 2014 .

[71]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[72]  U. Wandinger,et al.  Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign , 2015 .

[73]  V. Freudenthaler,et al.  EARLINET instrument intercomparison campaigns: overview on strategy and results , 2015 .

[74]  L. Alados-Arboledas,et al.  Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event , 2015 .

[75]  L. Mona,et al.  A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals , 2015 .

[76]  Grigorii P. Kokhanenko,et al.  Development of photodetectors for recording lidar signals in the photon counting and analog modes , 2015, Atmospheric and Ocean Optics.

[77]  J. Biele Polarization lidar : Corrections of instrumental effects , 2022 .