Simulation of one-dimensional quantum systems with a global SU(2) symmetry

In this paper, we describe a refined matrix product representation for many-body states that are invariant under SU(2) transformations and use it to extend the time-evolving block decimation (TEBD) algorithm to the simulation of time evolution in the presence of an SU(2) symmetry. The resulting algorithm, when tested in a critical quantum spin chain, proved to be more efficient than the standard TEBD.

[1]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[2]  Long-distance asymptotics of spin–spin correlation functions for the XXZ spin chain , 2002, hep-th/0206093.

[3]  C. Clark,et al.  Quantum phases of bosons in double-well optical lattices , 2007, 0705.2732.

[4]  I. McCulloch From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.

[5]  The density matrix renormalization group method applied to interaction round a face Hamiltonians , 1996, cond-mat/9610221.

[6]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[7]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[8]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[9]  Wada Tatsuaki Interaction-round-a-face density-matrix renormalization-group method applied to rotational-invariant quantum spin chains , 2000 .

[10]  S. White,et al.  Real-time evolution using the density matrix renormalization group. , 2004, Physical review letters.

[11]  I. McCulloch,et al.  The non-Abelian density matrix renormalization group algorithm , 2002 .

[12]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[13]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[14]  S. Rommer,et al.  CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE-DIMENSIONAL SPIN SYSTEMS AND THEIR RELATION TO THE DENSITY MATRIX RENORMALIZATION GROUP , 1997 .

[15]  Density matrix renormalization group and the nuclear shell model , 2006, nucl-th/0601044.

[16]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[17]  Shuai,et al.  Symmetrized density-matrix renormalization-group method for excited states of Hubbard models. , 1996, Physical review. B, Condensed matter.

[18]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[19]  G. Vidal,et al.  Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2004 .

[20]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[21]  P. Zoller,et al.  Numerical analysis of coherent many-body currents in a single atom transistor , 2005, quant-ph/0506256.