Noisy Quantum State Redistribution With Promise and the Alpha-Bit

We consider a variation of the well-studied quantum state redistribution task, in which the starting state is known only to the receiver Bob and not to the sender Alice. We refer to this as quantum state redistribution with a one-sided promise. In addition, we consider communication from Alice to Bob over a noisy channel $\mathcal {N}$ , instead of the noiseless channel, as is usually considered in state redistribution. We take a natural approach towards the solution of this problem where we “embed” the promise as part of the state and then invoke known protocols for quantum state redistribution composed with known protocols for transfer of quantum information over noisy channels. Using our approach, we are able to reproduce the Alpha-bit capacities with or without entanglement assistance in Hayden and Penington, using known protocols for quantum state redistribution and quantum communication over noisy channels. Furthermore, we generalize the entanglement assisted classical Alpha-bit capacity, showing that any quantum state redistribution protocol can be used as a black box to simulate classical communication.

[1]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[2]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[3]  Andreas J. Winter,et al.  Weak Decoupling Duality and Quantum Identification , 2010, IEEE Transactions on Information Theory.

[4]  Rahul Jain,et al.  One shot entanglement assisted classical and quantum communication over noisy quantum channels: A hypothesis testing and convex split approach , 2017, ArXiv.

[5]  M. Berta Single-shot Quantum State Merging , 2009, 0912.4495.

[6]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[7]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Mark Braverman,et al.  Information Equals Amortized Communication , 2011, IEEE Transactions on Information Theory.

[9]  Rahul Jain,et al.  Quantum Communication Using Coherent Rejection Sampling. , 2017, Physical review letters.

[10]  H. Umegaki CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, II , 1954 .

[11]  Dave Touchette,et al.  Incompressibility of classical distributions , 2019, ArXiv.

[12]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[13]  Dave Touchette,et al.  Smooth Entropy Bounds on One-Shot Quantum State Redistribution , 2014, IEEE Transactions on Information Theory.

[14]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Ming-Yong Ye,et al.  Quantum state redistribution based on a generalized decoupling , 2008 .

[16]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[17]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[18]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[19]  W. Marsden I and J , 2012 .

[20]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[21]  Andreas Winter,et al.  Distributed Compression of Correlated Classical-Quantum Sources or: The Price of Ignorance , 2018, IEEE Transactions on Information Theory.

[22]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[23]  Patrick M. Hayden,et al.  Approximate Quantum Error Correction Revisited: Introducing the Alpha-Bit , 2017, ArXiv.

[24]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[25]  Rahul Jain,et al.  Building Blocks for Communication Over Noisy Quantum Networks , 2017, IEEE Transactions on Information Theory.

[26]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[27]  H. Umegaki Conditional expectation in an operator algebra. III. , 1959 .

[28]  Ke Li,et al.  Second Order Asymptotics for Quantum Hypothesis Testing , 2012, ArXiv.

[29]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[30]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[31]  Patrick Hayden,et al.  Learning the Alpha-bits of black holes , 2018, Journal of High Energy Physics.

[32]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[33]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[34]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[35]  Dave Touchette Direct Sum Theorem for Bounded Round Quantum Communication Complexity , 2014, ArXiv.

[36]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[37]  Shun Watanabe,et al.  Channel Simulation and Coded Source Compression , 2015, IEEE Transactions on Information Theory.

[38]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[39]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[40]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[41]  Nilanjana Datta,et al.  One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.

[42]  Nilanjana Datta,et al.  An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution , 2014, 1409.4352.

[43]  Rahul Jain,et al.  A Hypothesis Testing Approach for Communication Over Entanglement Assisted Compound Quantum Channel , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[44]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[45]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[46]  Jaikumar Radhakrishnan,et al.  A property of quantum relative entropy with an application to privacy in quantum communication , 2009, JACM.

[47]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[48]  Rahul Jain,et al.  A One-Shot Achievability Result for Quantum State Redistribution , 2017, IEEE Transactions on Information Theory.

[49]  Andreas Winter,et al.  General Mixed State Quantum Data Compression with and without Entanglement Assistance , 2019, 2020 IEEE International Symposium on Information Theory (ISIT).

[50]  Andreas J. Winter,et al.  The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.

[51]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[52]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[53]  Rahul Jain,et al.  A unified approach to source and message compression , 2017, ArXiv.

[54]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..