Interactions of Moving Dislocations in Semiconductors with Point, Line and Planar Defects

We demonstrate that strained GeSi/Si heterostructures act as a model system for the study of the interaction of propagating dislocations with point, line and planar defects. In such heterostructures, the effective stress acting on a propagating dislocation may be varied from tens of MPa to of order 1 GPa, and the length of the propagating dislocation segment may be varied from nm to hundreds of nm. Results are presented from the interaction of strain-relieving dislocations with GeSi free surfaces, with point defects generated by ion implantation, and with other dislocations.

[1]  M. Reuter,et al.  Effect of the surface upon misfit dislocation velocities during the growth and annealing of SiGe/Si (001) heterostructures , 1998 .

[2]  Hull,et al.  In Situ Studies of the Interaction of Dislocations with Point Defects during Annealing of Ion Implanted Si/SiGe/Si (001) Heterostructures , 1998, Microscopy and Microanalysis.

[3]  P. Chi,et al.  The effect of dose rate on interstitial release from the end-of-range implant damage region in silicon , 1997 .

[4]  K. Schwarz,et al.  INTERACTION OF DISLOCATIONS ON CROSSED GLIDE PLANES IN A STRAINED EPITAXIAL LAYER , 1997 .

[5]  E. Fitzgerald,et al.  Novel dislocation structure and surface morphology effects in relaxed Ge/Si-Ge(graded)/Si structures , 1997 .

[6]  G. W. Smith,et al.  In-situ X-ray imaging of III–V strained-layer relaxation processes , 1995 .

[7]  Toshio Ogino,et al.  Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study , 1995 .

[8]  S. Jain,et al.  The kinetics of strain relaxation in lattice-mismatched semiconductor layers , 1994 .

[9]  A. Fischer,et al.  On plastic flow and work hardening in strained layer heterostructures , 1994 .

[10]  R. Hull Finite element analysis of stress relaxation in thin foil plan‐view transmission electron microscopy specimens , 1993 .

[11]  Robert Hull,et al.  New insights into the microscopic motion of dislocations in covalently bonded semiconductors by in‐situ transmission electron microscope observations of misfit dislocations in thin strained epitaxial layers , 1993 .

[12]  L. Feldman,et al.  Quantitative analysis of strain relaxation in GexSi1−x/Si(110) heterostructures and an accurate determination of stacking fault energy in GexSi1−x alloys , 1992 .

[13]  James R Engstrom,et al.  The reaction of atomic oxygen with Si(100) and Si(111): I. Oxide decomposition, active oxidation and the transition to passive oxidation , 1991 .

[14]  John C. Bean,et al.  Interpretation of dislocation propagation velocities in strained GexSi1−x/Si(100) heterostructures by the diffusive kink pair model , 1991 .

[15]  Martin L. Green,et al.  Mechanically and thermally stable Si‐Ge films and heterojunction bipolar transistors grown by rapid thermal chemical vapor deposition at 900 °C , 1991 .

[16]  L. B. Freund,et al.  A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path , 1990 .

[17]  P. Cohen,et al.  Relaxation of strained InGaAs during molecular beam epitaxy , 1990 .

[18]  H. Temkin,et al.  Enhanced strain relaxation in Si/GexSi1−x/Si heterostructures via point‐defect concentrations introduced by ion implantation , 1990 .

[19]  M. H. Lyons,et al.  Equilibrium critical thickness for Si1−xGex strained layers on (100) Si , 1990 .

[20]  John C. Bean,et al.  A phenomenological description of strain relaxation in GexSi1−x/Si(100) heterostructures , 1989 .

[21]  A. Parasnis,et al.  Dislocations in solids , 1989 .

[22]  B. Dodson Work hardening and strain relaxation in strained‐layer buffers , 1988 .

[23]  J. Rabier,et al.  Dislocations and plasticity in semiconductors. II. The relation between dislocation dynamics and plastic deformation , 1987 .

[24]  Jeffrey Y. Tsao,et al.  Relaxation of strained-layer semiconductor structures via plastic flow , 1987 .

[25]  J. Rabier,et al.  Dislocations and plasticity in semiconductors. I — Dislocation structures and dynamics , 1987 .

[26]  Northrup,et al.  Symmetric arsenic dimers on the Si(100) surface. , 1986, Physical review letters.

[27]  John C. Bean,et al.  GexSi1−x/Si strained‐layer superlattice grown by molecular beam epitaxy , 1984 .

[28]  K. Sumino,et al.  In situ X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals , 1983 .

[29]  E. Kasper,et al.  A one-dimensional SiGe superlattice grown by UHV epitaxy , 1975 .

[30]  J. R. Patel,et al.  Charged Impurity Effects on the Deformation of Dislocation-Free Germanium , 1966 .

[31]  A. Seeger,et al.  Bildung und diffusion von Kinken als grundprozess der Versetzungsbewegung bei der messung der inneren reibung , 1962 .

[32]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[33]  K. Maeda,et al.  Hydrogen Enhanced Dislocation Glides in Silicon , 1999 .

[34]  W. Nix,et al.  Role of Dislocation Interactions in Decreasing Mobile Threading Dislocation Density and Limiting Strain Relaxation in Si1-xGex Heteroepitaxial Films , 1994 .