Dual projective synchronization between integer-order and fractional-order chaotic systems

Abstract In this article, based on tracking control strategy and the stability theory of the fractional differential equation, a new controller has been designed to realize the dual projective synchronization (DPS) between integer-order and fractional-order chaotic systems. The proposed method is respectively applied to dual projective synchronization of the following two pairs of chaotic systems: Sprott-Lu and Liu-Chen chaotic systems. The numerical simulations verify the correctness and effectiveness of the strategy.

[1]  E. Ahmed,et al.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models , 2007 .

[2]  P. Davis,et al.  Dual synchronization of chaos , 2000 .

[3]  Dumitru Baleanu,et al.  Complete synchronization of commensurate fractional order chaotic systems using sliding mode control , 2013 .

[4]  Yongguang Yu,et al.  Function projective synchronization between integer-order and stochastic fractional-order nonlinear systems. , 2016, ISA transactions.

[5]  A. Uchida,et al.  Dual synchronization of chaos in Colpitts electronic oscillators and its applications for communications. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Narasimalu Srikanth,et al.  Dual function projective synchronization of fractional order complex chaotic systems , 2016 .

[7]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[8]  A. Uchida,et al.  Dual synchronization of chaos in microchip lasers. , 2003, Optics letters.

[9]  Mohammad Shahrokhi,et al.  Multi-synchronization of chaos via linear output feedback strategy , 2009 .

[10]  A. Almatroud Othman,et al.  Adaptive dual synchronization of chaotic and hyperchaotic systems with fully uncertain parameters , 2016 .

[11]  Xiao-Qing Zhang,et al.  Dislocated projective synchronization between fractional-order chaotic systems and integer-order chaotic systems , 2017 .

[12]  Jian Xiao,et al.  Dual Synchronization of Fractional-Order Chaotic Systems via a Linear Controller , 2013, TheScientificWorldJournal.

[13]  Zhiquan Wang,et al.  Generalized synchronization of unified chaotic system and the research of CSK , 2004, ICARCV.

[14]  L. Tsimring,et al.  Multiplexing chaotic signals using synchronization , 1996 .

[15]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[16]  Daolin Xu,et al.  Controlled Projective Synchronization in Nonpartially-Linear Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[17]  Mohammad Shahrokhi,et al.  Dual synchronization of chaotic systems via time-varying gain proportional feedback , 2008 .

[18]  Junbiao Guan,et al.  Adaptive modified generalized function projection synchronization between integer-order and fractional-order chaotic systems , 2016 .

[19]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[20]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Xiao-Jun Liu,et al.  Synchronization between a fractional-order system and an integer order system , 2011, Comput. Math. Appl..

[22]  Jun-an Lu,et al.  Dual synchronization based on two different chaotic systems , 2007 .

[23]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[24]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[25]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[26]  A. Chowdhury,et al.  Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems , 2010 .

[27]  K. A. Shore,et al.  Dual and dual-cross synchronizations in chaotic systems , 2001 .

[28]  Manfeng Hu,et al.  Adaptive feedback controller for projective synchronization , 2008 .

[29]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[30]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[31]  A Uchida,et al.  Dual synchronization of chaos in one-way coupled microchip lasers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.