Nearly optimal constructions of PIR and batch codes

In this work we study two families of codes with availability, namely private information retrieval (FIR) codes and batch codes. While the former requires that every information symbol has k mutually disjoint recovering sets, the latter asks this property for every multiset request of k information symbols. The main problem under this paradigm is to minimize the number of redundancy symbols. We denote this value by rp(n, k), r<inf>B</inf>(n, k), for PIR, batch codes, respectively, where n is the number of information symbols. Previous results showed that for any constant k, rp(n, k) = Θ(√n) and r<inf>B</inf> (n, k) = O(√n log(n)). In this work we study the asymptotic behavior of these codes for non-constant k and specifically for k = Θ(n<sup>∊</sup>). We also study the largest value of k such that the rate of the codes approaches 1, and show that for all e < 1, r<inf>P</inf>(n, n<sup>∊</sup>) = o(n), while for batch codes, this property holds for all ∊ < 0.5.

[1]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[3]  Csilla Bujtás,et al.  Relaxations of Hall's condition: Optimal batch codes with multiple queries , 2012 .

[4]  Helger Lipmaa,et al.  Linear Batch Codes , 2014, ICMCTA.

[5]  Hsuan-Yin Lin,et al.  Lengthening and Extending Binary Private Information Retrieval Codes , 2017, ArXiv.

[6]  Alexander Vardy,et al.  Lower Bound on the Redundancy of PIR Codes , 2016, ArXiv.

[7]  Vinayak Ramkumar,et al.  Binary, shortened projective reed muller codes for coded private information retrieva , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[8]  Hui Zhang,et al.  Combinatorial systematic switch codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[9]  Frédérique E. Oggier,et al.  Locally repairable codes with multiple repair alternatives , 2013, 2013 IEEE International Symposium on Information Theory.

[10]  Paul H. Siegel,et al.  Consecutive switch codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[11]  Eitan Yaakobi,et al.  Nearly Optimal Constructions of PIR and Batch Codes , 2019, IEEE Transactions on Information Theory.

[12]  Shubhangi Saraf,et al.  High-rate codes with sublinear-time decoding , 2011, STOC '11.

[13]  Sushmita Ruj,et al.  Combinatorial batch codes: A lower bound and optimal constructions , 2012, Adv. Math. Commun..

[14]  Richard A. Brualdi,et al.  Combinatorial batch codes and transversal matroids , 2010, Adv. Math. Commun..

[15]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[16]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[17]  Shu Lin,et al.  Error Control Coding , 2004 .

[18]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[19]  Jehoshua Bruck,et al.  Codes for network switches , 2013, 2013 IEEE International Symposium on Information Theory.

[20]  Jehoshua Bruck,et al.  Switch Codes: Codes for Fully Parallel Reconstruction , 2017, IEEE Transactions on Information Theory.

[21]  Alexandros G. Dimakis,et al.  Batch codes through dense graphs without short cycles , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[22]  R. Salem,et al.  On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Mario Blaum,et al.  New array codes for multiple phased burst correction , 1993, IEEE Trans. Inf. Theory.

[24]  Anyu Wang,et al.  Achieving arbitrary locality and availability in binary codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[25]  Natalia Silberstein,et al.  Optimal combinatorial batch codes based on block designs , 2016, Des. Codes Cryptogr..

[26]  Peter J. Cameron,et al.  Some sequences of integers , 1989, Discret. Math..

[27]  Eitan Yaakobi,et al.  Constructions of batch codes with near-optimal redundancy , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[28]  Yuan Zhou Introduction to Coding Theory , 2010 .

[29]  Hui Zhang,et al.  Bounds for batch codes with restricted query size , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[30]  Venkatesan Guruswami,et al.  Locality via Partially Lifted Codes , 2017, APPROX-RANDOM.

[31]  Eitan Yaakobi,et al.  PIR with Low Storage Overhead: Coding instead of Replication , 2015, ArXiv.

[32]  Shubhangi Saraf,et al.  Locally Decodable Codes , 2016, Encyclopedia of Algorithms.

[33]  Dimitris S. Papailiopoulos,et al.  Locality and Availability in Distributed Storage , 2014, IEEE Transactions on Information Theory.

[34]  Han Mao Kiah,et al.  Optimal binary switch codes with small query size , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).