Coloring Problems on Bipartite Graphs of Small Diameter

We investigate a number of coloring problems restricted to bipartite graphs with bounded diameter. First, we investigate the $k$-List Coloring, $k$-Coloring, and $k$-Precoloring Extension problems on bipartite graphs with diameter at most $d$, proving $\textsf{NP}$-completeness in most cases, and leaving open only the List $3$-Coloring and $3$-Precoloring Extension problems when $d=3$. Some of these results are obtained $\textsc{through}$ a proof that the Surjective $C_6$-Homomorphism problem is $\textsf{NP}$-complete on bipartite graphs with diameter at most four. Although the latter result has been already proved [Vikas, 2017], we present ours as an alternative simpler one. As a byproduct, we also get that $3$-Biclique Partition is $\textsf{NP}$-complete. An attempt to prove this result was presented in [Fleischner, Mujuni, Paulusma, and Szeider, 2009], but there was a flaw in their proof, which we identify and discuss here. Finally, we prove that the $3$-Fall Coloring problem is $\textsf{NP}$-complete on bipartite graphs with diameter at most four, and prove that $\textsf{NP}$-completeness for diameter three would also imply $\textsf{NP}$-completeness of $3$-Precoloring Extension on diameter three, thus closing the previously mentioned open cases. This would also answer a question posed in [Kratochvíl, Tuza, and Voigt, 2002].

[1]  Jan Kratochvíl,et al.  Precoloring extension with fixed color bound. , 1993 .

[2]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.

[3]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, WG.

[4]  Daniël Paulusma,et al.  Open Problems on Graph Coloring for Special Graph Classes , 2015, WG.

[5]  Daniël Paulusma,et al.  The computational complexity of disconnected cut and 2K2-partition , 2011, J. Comb. Theory, Ser. B.

[6]  Daniël Paulusma,et al.  Narrowing the Complexity Gap for Colouring (Cs, Pt)-Free Graphs , 2015, Comput. J..

[7]  Zsolt Tuza,et al.  On the b-Chromatic Number of Graphs , 2002, WG.

[8]  Narayan Vikas,et al.  Computational Complexity of Graph Partition under Vertex-Compaction to an Irreflexive Hexagon , 2017, MFCS.

[9]  Petr A. Golovach,et al.  Finding vertex-surjective graph homomorphisms , 2012, Acta Informatica.

[10]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[11]  Narayan Vikas,et al.  Compaction, Retraction, and Constraint Satisfaction , 2004, SIAM J. Comput..

[12]  Daniël Paulusma,et al.  Covering graphs with few complete bipartite subgraphs , 2007, Theor. Comput. Sci..

[13]  Barnaby Martin,et al.  The complexity of surjective homomorphism problems - a survey , 2011, Discret. Appl. Math..

[14]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[15]  Paul G. Spirakis,et al.  Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs , 2012, SOFSEM.

[16]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[17]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[18]  Shenwei Huang,et al.  Complexity of Ck-Coloring in Hereditary Classes of Graphs , 2019, ESA.

[19]  Zsolt Tuza,et al.  Precoloring Extension III: Classes of Perfect Graphs , 1996, Combinatorics, Probability and Computing.

[20]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[21]  Ivan Hal Sudborough,et al.  Computing Cross Associations for Attack Graphs and Other Applications , 2007, 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07).

[22]  Petr A. Golovach,et al.  List Coloring in the Absence of a Linear Forest , 2011, Algorithmica.

[23]  Renu C. Laskar,et al.  Fall colouring of bipartite graphs and cartesian products of graphs , 2009, Discret. Appl. Math..

[24]  Narayan Vikas,et al.  Computational complexity of compaction to cycles , 1999, SODA '99.

[25]  J. K. Il Precoloring Extension with Fixed Color Bound , 1994 .

[26]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[27]  Sylvain Gravier,et al.  A Hajós-like theorem for list coloring , 1996, Discret. Math..

[28]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[29]  Sylvain Gravier Coloration et produits de graphes , 1996 .

[30]  Taoufik Faik,et al.  La b-continuite des b-colorations : complexité, propriétés structurelles et algorithmes , 2005 .

[31]  Petr A. Golovach,et al.  Surjective H-Colouring: New Hardness Results , 2017, CiE.

[32]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[33]  Z. Tuza,et al.  Dominating cliques in P5-free graphs , 1990 .