Mathematical Morphology: Star/Galaxy Differentiation & Galaxy Morphology Classification

Abstract We present an application of Mathematical Morphology (MM) for the classification of astronomical objects, both for star/galaxy differentiation and galaxy morphology classification. We demonstrate that, for CCD images, 99.3 ± 3.8% of galaxies can be separated from stars using MM, with 19.4 ± 7.9% of the stars being misclassified. We demonstrate that, for photographic plate images, the number of galaxies correctly separated from the stars can be increased using our MM diffraction spike tool, which allows 51.0 ± 6.0% of the high-brightness galaxies that are inseparable in current techniques to be correctly classified, with only 1.4 ± 0.5% of the high-brightness stars contaminating the population. We demonstrate that elliptical (E) and late-type spiral (Sc-Sd) galaxies can be classified using MM with an accuracy of 91.4 ± 7.8%. It is a method involving fewer ‘free parameters’ than current techniques, especially automated machine learning algorithms. The limitation of MM galaxy morphology classification based on seeing and distance is also presented. We examine various star/galaxy differentiation and galaxy morphology classification techniques commonly used today, and show that our MM techniques compare very favourably.

[1]  M. Drinkwater,et al.  The Large-scale Distribution of Radio Sources , 1996, Publications of the Astronomical Society of Australia.

[2]  A. Sandage The Hubble atlas of galaxies , 1961 .

[3]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[5]  Ray M. Sharples,et al.  A Catalog of Morphological Types in 10 Distant Rich Clusters of Galaxies , 1996, astro-ph/9611210.

[6]  J. Sérsic,et al.  Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .

[7]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[8]  Analysis of Mathematical Morphology for Quantifying Galaxy Distributions in AT-Body Simulations , 1999 .

[9]  S. Majewski,et al.  Starcounts Redivivus II: Deep Starcounts with Keck and HST and the Luminosity Function of the Galactic Halo , 1996, astro-ph/9607033.

[10]  Paul Siqueira,et al.  A morphological filter for removing cirrus-like' emission from far-infrared extragalactic IRAS fields , 1993 .

[11]  E. Hubble The Realm of the Nebulæ , 1956, Nature.

[12]  G. Matheron Random Sets and Integral Geometry , 1976 .

[13]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[14]  Henk J. A. M. Heijmans,et al.  Mathematical Morphology: A Modern Approach in Image Processing Based on Algebra and Geometry , 1995, SIAM Rev..

[15]  S. Djorgovski,et al.  Automated Star/Galaxy Classification for Digitized Poss-II , 1995 .

[16]  S. O. Physics,et al.  The SuperCOSMOS Sky Survey – I. Introduction and description , 2001, astro-ph/0108286.

[17]  S. Maddox,et al.  The APM galaxy survey. I - APM measurements and star-galaxy separation , 1990 .

[18]  S. Andreon,et al.  Wide field imaging – I. Applications of neural networks to object detection and star/galaxy classification , 2000, astro-ph/0006115.

[19]  Stephen C. Odewahn,et al.  STAR-GALAXY SEPARATION WITH A NEURAL NETWORK. II. MULTIPLE SCHMIDT PLATE FIELDS , 1993 .

[20]  Neill Reid,et al.  New light on faint stars. II. A photometric study of the low luminosity main sequence. , 1982 .

[21]  Simon P. Driver,et al.  A Concise Reference to (Projected) Sérsic R 1/n Quantities, Including Concentration, Profile Slopes, Petrosian Indices, and Kron Magnitudes , 2005, Publications of the Astronomical Society of Australia.

[22]  R. Sanders,et al.  Exponential bulges in late-type spirals : an improved description of the light distribution. , 1994 .

[23]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .

[24]  Suzanne M. Lea,et al.  An Algorithm to Smooth and Find Objects in Astronomical Images , 1989 .

[25]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[26]  W. L. Sebok,et al.  Optimal classification of images into stars or galaxies - a Bayesian approach. , 1979 .

[27]  S. Odewahn,et al.  Automated star/galaxy discrimination with neural networks , 1992 .

[28]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[29]  P. Shaver Possible large-scale structure at redshifts ≲ 0.5 , 1987, Nature.

[30]  Ajit Kembhavi,et al.  A difference boosting neural network for automated star-galaxy classification , 2002 .

[31]  The las campanas/AAT rich cluster survey - I. precision and reliability of the photometric catalogue , 2001, astro-ph/0106258.

[32]  B. Peterson,et al.  Galaxy number counts. - I. Photographic observations to B=23.5 mag. , 1991 .

[33]  Nigel Hambly,et al.  The SuperCOSMOS Sky Survey – II. Image detection, parametrization, classification and photometry , 2001, astro-ph/0108290.

[34]  F. Stootman,et al.  The HIPASS catalogue - III. Optical counterparts and isolated dark galaxies , 2005, astro-ph/0505591.

[35]  J. J.,et al.  The Realm of the Nebulae , 1936, Nature.

[36]  M. J. Coe,et al.  Star/galaxy classification using Kohonen self-organizing maps , 1996 .

[37]  STRUCTURE OF DISK-DOMINATED GALAXIES. I. BULGE/DISK PARAMETERS, SIMULATIONS, AND SECULAR EVOLUTION , 2002, astro-ph/0208404.

[38]  M. Irwin,et al.  The SuperCOSMOS Sky Survey – III. Astrometry , 2001, astro-ph/0108291.

[39]  Sidney van den Bergh,et al.  A Preliminary Luminosity Clssification of Late-Type Galaxies. , 1960 .

[40]  Francisco Valdes,et al.  The Morphologies of Distant Galaxies. I. an Automated Classification System , 1994 .

[41]  Petri Mähönen,et al.  Fuzzy Classifier for Star-Galaxy Separation , 2000 .

[42]  Christopher J. Conselice,et al.  The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .