Existence of Carathe/spl acute/odory solutions in nonlinear systems with discontinuous switching feedback controllers

In this note, we consider the existence of a Carathe/spl acute/odory solution in a single-input-single-output nonlinear system with a discontinuous switching feedback controller. The main contribution is to show that if the nonlinear system can be transformed into a global normal form, then we can specify the value of the discontinuous switching feedback controller on the switching hypersurface so that the closed-loop system has a Carathe/spl acute/odory solution.

[1]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[2]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[3]  R. Sepulchre,et al.  Lyapunov functions for stable cascades and applications to global stabilization , 1999, IEEE Trans. Autom. Control..

[4]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[5]  H. Sira-Ramírez On the dynamical sliding mode control of nonlinear systems , 1993 .

[6]  A. Isidori Nonlinear Control Systems , 1985 .

[7]  M. Polycarpou,et al.  On the existence and uniqueness of solutions in adaptive control systems , 1993, IEEE Trans. Autom. Control..

[8]  Frédéric Mazenc,et al.  Strict Lyapunov functions for time-varying systems , 2003, Autom..

[9]  B. Paden,et al.  Lyapunov stability theory of nonsmooth systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[10]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[11]  Emilio Roxin On stability in control systems. , 1965 .

[12]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[13]  K. Deimling Multivalued Differential Equations , 1992 .

[14]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[15]  Basílio E. A. Milani Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls , 2002, Autom..

[16]  Otomar Hájek,et al.  Discontinuous differential equations, II , 1979 .

[17]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[18]  Emilio Roxin,et al.  Stability in general control systems. , 1965 .

[19]  F. Ancona,et al.  Patchy Vector Fields and Asymptotic Stabilization , 1999 .

[20]  S. Gutman Uncertain dynamical systems--A Lyapunov min-max approach , 1979 .

[21]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[22]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[23]  V. Utkin Variable structure systems with sliding modes , 1977 .

[24]  Tingshu Hu,et al.  Stability regions for saturated linear systems via conjugate Lyapunov functions , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[25]  Pushkin Kachroo,et al.  Existence of solutions to a class of nonlinear convergent chattering-free sliding mode control systems , 1999, IEEE Trans. Autom. Control..

[26]  Seung-Jean Kim,et al.  On the existence of Caratheodory solutions in mechanical systems with friction , 1999, IEEE Trans. Autom. Control..

[27]  J. Coron,et al.  Lyapunov design of stabilizing controllers for cascaded systems , 1991 .

[28]  Nelson Wiley Passivity and Global Stabilization of Cascaded Nonlinear Systems , 1992 .

[29]  H. Sira-Ramírez Differential geometric methods in variable-structure control , 1988 .