Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects

Local ferroelectric polarization switching in multiferroic BiFeO3–CoFe2O4 nanostructures is studied using switching spectroscopy piezoresponse force microscopy (SS-PFM). Dynamic parameters such as the work of switching are found to vary gradually with distance from the heterostructure interfaces, while nucleation and coercive biases are uniform within the ferroelectric phase. We demonstrate that the electrostatic and elastic fields at interfaces do not affect switching and nucleation behavior. Rather, the observed evolution of switching properties is a geometric effect of the heterointerface on the signal generation volume in PFM. This implies that the heterostructures can be successfully used in devices, since interfaces do not act as preferential sites for switching. At the same time, small systematic variations of switching properties within the ferroelectric component can be ascribed to the long-range elastic and electrostatic fields in the heterostructure, which can be visualized in 2D.

[1]  Wenhui Ma,et al.  Polarization imprint in ordered arrays of epitaxial ferroelectric nanostructures , 2004 .

[2]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[3]  A. Kingon,et al.  Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors , 2003 .

[4]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[5]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[6]  T. Zhao,et al.  Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures , 2007 .

[7]  A. Roytburd,et al.  Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films , 2006 .

[8]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[9]  Anna N. Morozovska,et al.  Resolution-function theory in piezoresponse force microscopy : Wall imaging, spectroscopy, and lateral resolution , 2007 .

[10]  Sergei V. Kalinin,et al.  Quantitative Determination of Tip Parameters in Piezoresponse Force Microscopy , 2007 .

[11]  Stephen Jesse,et al.  Quantitative mapping of switching behavior in piezoresponse force microscopy , 2006 .

[12]  Nicola A. Spaldin,et al.  Recent progress in first-principles studies of magnetoelectric multiferroics , 2005 .

[13]  U. Gösele,et al.  Polarization imprint and size effects in mesoscopic ferroelectric structures , 2001 .

[14]  S. Dong,et al.  Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals , 2003 .

[15]  M. Fiebig,et al.  Magnetic phase control by an electric field , 2004, Nature.

[16]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[17]  J. Glatz-Reichenbach,et al.  Investigation of local piezoelectric properties of thin copolymer films , 1991 .

[18]  A. Gruverman,et al.  Nanoscale Characterisation of Ferroelectric Materials , 2004 .

[19]  Local electromechanical properties of ferroelectric materials for piezoelectric applications , 2004 .

[20]  C. Eom,et al.  Polarization switching in epitaxial BiFeO3 films , 2005 .

[21]  A. Gruverman,et al.  Preface to Nanoscale Characterization of Ferroelectric Materials: Scanning Probe Microscopy Approach , 2004 .

[22]  Elizabeth K. Reilly,et al.  Electric field-induced magnetization switching in epitaxial columnar nanostructures. , 2005, Nano letters.

[23]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[24]  C. Eom,et al.  Ferroelectric domain structure in epitaxial BiFeO3 films , 2005 .

[25]  Anna N. Morozovska,et al.  Domain Nucleation and Hysteresis Loop Shape in Piezoresponse Force Spectroscopy , 2006 .

[26]  M. Molotskii Generation of ferroelectric domains in atomic force microscope , 2003 .

[27]  Stephen Jesse,et al.  High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. , 2006, Physical review letters.

[28]  R. Ramesh,et al.  Controlling self-assembled perovskite-spinel nanostructures. , 2006, Nano letters.