a Hybrid Stress Quadrilateral Shell Element with Full Rotational D.O.F.S
暂无分享,去创建一个
[1] L. Morley. Skew plates and structures , 1963 .
[2] Norman F. Knight,et al. Improved assumed‐stress hybrid shell element with drilling degrees of freedom for linear stress, buckling and free vibration analyses , 1995 .
[3] O. C. Zienkiewicz,et al. Analysis of thick and thin shell structures by curved finite elements , 1970 .
[4] Robert D. Cook,et al. On improved hybrid finite elements with rotational degrees of freedom , 1989 .
[5] Ted Belytschko,et al. Stabilized rapidly convergent 18-degrees-of-freedom flat shell triangular element , 1992 .
[6] K. Bathe,et al. A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .
[7] M. A. Aminpour,et al. Direct formulation of a hybrid 4-node shell element with drilling degrees of freedom , 1992 .
[8] Satya N. Atluri,et al. On Some New General and Complementary Energy Theorems for the Rate Problems in Finite Strain. Classical Elastoplasticity , 1980 .
[9] K. Y. Sze,et al. AN EFFICIENT QUADRILATERAL PLANE ELEMENT WITH DRILLING DEGREES OF FREEDOM USING ORTHOGONAL STRESS MODES , 1992 .
[10] Ted Belytschko,et al. Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .
[11] K. Y. Sze,et al. An explicit hybrid-stabilized 9-node Lagrangian shell element , 1994 .
[12] Adnan Ibrahimbegovic,et al. Stress resultant geometrically non‐linear shell theory with drilling rotations. Part III: Linearized kinematics , 1994 .
[13] K. Y. Sze,et al. Efficient formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible matrix formulation , 1992 .
[14] C. L. Chow,et al. On invariance of isoparametric hybrid/mixed elements , 1992 .
[15] T. Pian,et al. Rational approach for assumed stress finite elements , 1984 .
[16] Carlos A. Felippa,et al. A triangular membrane element with rotational degrees of freedom , 1985 .
[17] K. Y. Sze,et al. A novel approach for devising higher‐order hybrid elements , 1993 .
[18] T. Belytschko,et al. A C0 triangular plate element with one‐point quadrature , 1984 .
[19] S. Atluri,et al. On newly developed assumed stress finite element formulations for geometrically and materially nonlinear problems , 1995 .
[20] C. L. Chow,et al. A mixed formulation of a four-node mindlin shell/plate with interpolated covariant transverse shear strains , 1991 .
[21] C. W. S. To,et al. Hybrid strain based three-node flat triangular shell elements , 1994 .
[22] Edward L. Wilson,et al. Thick shell and solid finite elements with independent rotation fields , 1991 .
[23] Theodore H. H. Pian,et al. Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .
[24] Edward L. Wilson,et al. A robust quadrilateral membrane finite element with drilling degrees of freedom , 1990 .
[25] M. D. Olson,et al. A simple flat triangular shell element revisited , 1979 .
[26] D. Allman. A compatible triangular element including vertex rotations for plane elasticity analysis , 1984 .
[27] Amin Ghali,et al. Hybrid Plane Quadrilateral Element with Corner Rotations , 1993 .
[28] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[29] R. L. Harder,et al. A proposed standard set of problems to test finite element accuracy , 1985 .
[30] K. Y. Sze,et al. Simple semi-loof element for analyzing folded-plate structures , 1994 .
[31] F. Brezzi,et al. On drilling degrees of freedom , 1989 .
[32] Eduardo N. Dvorkin,et al. A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .
[33] B. Irons,et al. Techniques of Finite Elements , 1979 .
[34] Richard H. MacNeal,et al. Toward a defect-free four-noded membrane element , 1989 .
[35] K. Y. Sze,et al. Admissible matrix formulation—from orthogonal approach to explicit hybrid stabilization , 1996 .