a Hybrid Stress Quadrilateral Shell Element with Full Rotational D.O.F.S

[1]  L. Morley Skew plates and structures , 1963 .

[2]  Norman F. Knight,et al.  Improved assumed‐stress hybrid shell element with drilling degrees of freedom for linear stress, buckling and free vibration analyses , 1995 .

[3]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[4]  Robert D. Cook,et al.  On improved hybrid finite elements with rotational degrees of freedom , 1989 .

[5]  Ted Belytschko,et al.  Stabilized rapidly convergent 18-degrees-of-freedom flat shell triangular element , 1992 .

[6]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[7]  M. A. Aminpour,et al.  Direct formulation of a hybrid 4-node shell element with drilling degrees of freedom , 1992 .

[8]  Satya N. Atluri,et al.  On Some New General and Complementary Energy Theorems for the Rate Problems in Finite Strain. Classical Elastoplasticity , 1980 .

[9]  K. Y. Sze,et al.  AN EFFICIENT QUADRILATERAL PLANE ELEMENT WITH DRILLING DEGREES OF FREEDOM USING ORTHOGONAL STRESS MODES , 1992 .

[10]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[11]  K. Y. Sze,et al.  An explicit hybrid-stabilized 9-node Lagrangian shell element , 1994 .

[12]  Adnan Ibrahimbegovic,et al.  Stress resultant geometrically non‐linear shell theory with drilling rotations. Part III: Linearized kinematics , 1994 .

[13]  K. Y. Sze,et al.  Efficient formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible matrix formulation , 1992 .

[14]  C. L. Chow,et al.  On invariance of isoparametric hybrid/mixed elements , 1992 .

[15]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[16]  Carlos A. Felippa,et al.  A triangular membrane element with rotational degrees of freedom , 1985 .

[17]  K. Y. Sze,et al.  A novel approach for devising higher‐order hybrid elements , 1993 .

[18]  T. Belytschko,et al.  A C0 triangular plate element with one‐point quadrature , 1984 .

[19]  S. Atluri,et al.  On newly developed assumed stress finite element formulations for geometrically and materially nonlinear problems , 1995 .

[20]  C. L. Chow,et al.  A mixed formulation of a four-node mindlin shell/plate with interpolated covariant transverse shear strains , 1991 .

[21]  C. W. S. To,et al.  Hybrid strain based three-node flat triangular shell elements , 1994 .

[22]  Edward L. Wilson,et al.  Thick shell and solid finite elements with independent rotation fields , 1991 .

[23]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[24]  Edward L. Wilson,et al.  A robust quadrilateral membrane finite element with drilling degrees of freedom , 1990 .

[25]  M. D. Olson,et al.  A simple flat triangular shell element revisited , 1979 .

[26]  D. Allman A compatible triangular element including vertex rotations for plane elasticity analysis , 1984 .

[27]  Amin Ghali,et al.  Hybrid Plane Quadrilateral Element with Corner Rotations , 1993 .

[28]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[29]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[30]  K. Y. Sze,et al.  Simple semi-loof element for analyzing folded-plate structures , 1994 .

[31]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[32]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[33]  B. Irons,et al.  Techniques of Finite Elements , 1979 .

[34]  Richard H. MacNeal,et al.  Toward a defect-free four-noded membrane element , 1989 .

[35]  K. Y. Sze,et al.  Admissible matrix formulation—from orthogonal approach to explicit hybrid stabilization , 1996 .