Combination–combination phase synchronization among non-identical fractional order complex chaotic systems via nonlinear control

In the present article nonlinear control method is used for combination–combination phase synchronization among fractional order non-identical complex chaotic systems. The control functions are designed with the help of a new lemma and Lyapunov stability theory. The nonlinear control method is found to be very effective and convenient to achieve the said type of synchronization of the non-identical fractional order complex chaotic systems. Numerical simulations are carried out using Adams-Bashforth–Moulton method and the results are depicted through graphs for different particular cases.

[1]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[2]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[3]  Pietro Cornetti,et al.  Calculation of the tensile and flexural strength of disordered materials using fractional calculus , 2004 .

[4]  Xingyuan Wang,et al.  CHAOS GENERATED FROM THE FRACTIONAL-ORDER COMPLEX CHEN SYSTEM AND ITS APPLICATION TO DIGITAL SECURE COMMUNICATION , 2013 .

[5]  Yi Shen,et al.  Compound synchronization of four memristor chaotic oscillator systems and secure communication. , 2013, Chaos.

[6]  Elsayed Ahmed,et al.  On chaos control and synchronization of the commensurate fractional order Liu system , 2013, Commun. Nonlinear Sci. Numer. Simul..

[7]  Xiaobing Zhou,et al.  Combination-Combination Synchronization of Four Nonlinear Complex Chaotic Systems , 2014 .

[8]  Vijay K. Yadav,et al.  Phase and anti-phase synchronizations of fractional order hyperchaotic systems with uncertainties and external disturbances using nonlinear active control method , 2017 .

[9]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[10]  Xingyuan Wang,et al.  Chaos in the fractional-order complex Lorenz system and its synchronization , 2013 .

[11]  Andrew Y. T. Leung,et al.  Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method , 2014 .

[12]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[13]  Junwei Wang,et al.  Chaos Control of a Fractional-Order Financial System , 2010 .

[14]  Vijay K. Yadav,et al.  Synchronization between fractional order complex chaotic systems , 2017 .

[15]  Jie Chen,et al.  Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control , 2014 .

[16]  Mayank Srivastava,et al.  Hybrid phase synchronization between identical and nonidentical three-dimensional chaotic systems using the active control method , 2013 .

[17]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[18]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[19]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[20]  Xinchu Fu,et al.  Combination synchronization of three different order nonlinear systems using active backstepping design , 2013 .

[21]  T. Bountis,et al.  Dynamical properties and synchronization of complex non-linear equations for detuned lasers , 2009 .

[22]  Hadi Taghvafard,et al.  Phase and anti-phase synchronization of fractional order chaotic systems via active control , 2011 .

[23]  Dumitru Baleanu,et al.  Chaotic incommensurate fractional order Rössler system: active control and synchronization , 2011 .

[24]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[25]  Luo Runzi,et al.  Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. , 2012, Chaos.

[26]  Vijay K. Yadav,et al.  Dual combination synchronization of the fractional order complex chaotic systems , 2017 .

[27]  Narasimalu Srikanth,et al.  Dual function projective synchronization of fractional order complex chaotic systems , 2016 .

[28]  Jianping Cai,et al.  Finite-Time Combination-Combination Synchronization for Hyperchaotic Systems , 2013 .

[29]  Ling Hong,et al.  Fractional-order complex T system: bifurcations, chaos control, and synchronization , 2014 .

[30]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[31]  Guohui Li Modified projective synchronization of chaotic system , 2007 .

[32]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[33]  P. Davis,et al.  Dual synchronization of chaos , 2000 .

[34]  Guangzhao Cui,et al.  Combination–combination synchronization among four identical or different chaotic systems , 2013 .

[35]  Xingyuan Wang,et al.  Chaos control of a fractional order modified coupled dynamos system , 2009 .

[36]  Juan Gonzalo Barajas-Ramírez,et al.  Hybrid Chaos Synchronization , 2003, Int. J. Bifurc. Chaos.

[37]  José António Tenreiro Machado,et al.  Preface: Special issue of computers and mathematics with applications on fractional differentiation and its applications , 2010, Comput. Math. Appl..

[38]  Feiqi Deng,et al.  Double-compound synchronization of six memristor-based Lorenz systems , 2014 .

[39]  Hadi Taghvafard,et al.  Numerical solution of the high thermal loss problem presented by a fractional differential equation , 2011 .

[40]  K. S. Ojo,et al.  Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique , 2014 .

[41]  Compound synchronization of fourth-order memristor oscillator , 2014 .

[42]  Xiao-Song Yang,et al.  Chaoticity of some chemical attractors: a computer assisted proof , 2005 .

[43]  K. S. Ojo,et al.  Reduced Order Projective and Hybrid Projective Combination-Combination Synchronization of Four Chaotic Josephson Junctions , 2014 .

[44]  Luo Runzi,et al.  Combination synchronization of three classic chaotic systems using active backstepping design. , 2011, Chaos.

[45]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[46]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[47]  M. Lakshmanan,et al.  SECURE COMMUNICATION USING A COMPOUND SIGNAL USING SAMPLED-DATA FEEDBACK , 2003 .