First acyclic diene metathesis polymerization under biphasic conditions using a dicationic ruthenium alkylidene: access to high-molecular-weight polymers with very low ruthenium contamination.

The acyclic diene metathesis (ADMET) polymerization of 6-hydroxy-1,10-undecadiene (M1) and 6-acetoxy-1,10-undecadiene (M2) by the action of two different catalysts, i.e., the second-generation Grubbs-Hoveyda system ([RuCl2(IMesH2)(CH-2-(2-PrO-C6H4)]) (1) and the dicationic ruthenium alkylidene [Ru(DMF)3(IMesH2)(CH-2-(2-PrO-C6H4)] (2, IMesH2 = 1,3-dimesitylimidazolin-2-ylidene) is reported. Biphasic conditions using 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BDMIM(+)BF4(-)]) and 1,2,4-trichlorobenzene (TCB) are applied. Under the chosen conditions (T = 75 °C, 20 mbar), the use of catalyst 1 results only in the formation of low-molecular-weight polymers (Mn ≤ 10,000 g mol(-1)), while catalyst 2 allows for the high yield synthesis of high-molecular-weight polymers (Mn ≤ 40,000 g mol(-1), yields ≤ 99%). Irrespective of the catalyst used, all polymers display a high trans-content (>95%). Notably, Ru-contamination of the target polymers without any additional purification is as low as 1.2 ppm with catalyst 2. Together with the high yields and high molecular weights, the low Ru-contaminations clearly illustrate the advantages of the biphasic setup.

[1]  P. Poornima,et al.  Synthesis, structure, DNA/protein binding and in vitro cytotoxicity of new ruthenium metallates , 2014 .

[2]  M. Baptista,et al.  Cytotoxicity Studies of Cyclometallated Ruthenium(II) Compounds: New Applications for Ruthenium Dyes , 2014 .

[3]  A. Dabrowska,et al.  Dialkylgallium Complexes with Alkoxide and Aryloxide Ligands Possessing N-Heterocyclic Carbene Functionalities: Synthesis and Structure , 2014 .

[4]  Camila P. Ferraz,et al.  Ionic Grubbs–Hoveyda Complexes for Biphasic Ring‐Opening Metathesis Polymerization in Ionic Liquids: Access to Low Metal Content Polymers , 2014 .

[5]  K. Wagener,et al.  Systematic studies of morphological changes of precision polyethylene. , 2014, Macromolecular rapid communications.

[6]  T. Swager,et al.  Metathesis Step-Growth Polymerizations in Ionic Liquid. , 2013, ACS macro letters.

[7]  S. Diver,et al.  Removal of ruthenium using a silica gel supported reagent. , 2013, Organic letters.

[8]  M. Buchmeiser,et al.  Ionically Tagged Ru–Alkylidenes for Metathesis Reactions under Biphasic Liquid–Liquid Conditions , 2013 .

[9]  M. Schulz,et al.  ADMET: The Future Revealed , 2013 .

[10]  M. Buchmeiser,et al.  Reactivity of the Dicationic Ruthenium–Alkylidene Complex [Ru(DMF)3(IMesH2)(=CH—2—(2—PrO)—C6H4)],2+(BF4−)2] in Ring-Opening Metathesis and Cyclopolymerization , 2013 .

[11]  M. Buchmeiser,et al.  A dicationic ruthenium alkylidene complex for continuous biphasic metathesis using monolith-supported ionic liquids. , 2012, Chemistry.

[12]  G. Vougioukalakis Removing ruthenium residues from olefin metathesis reaction products. , 2012, Chemistry.

[13]  W. Hieringer,et al.  Ethene‐Induced Temporary Inhibition of Grubbs Metathesis Catalysts , 2011 .

[14]  K. Wagener,et al.  ADMET: Metathesis polycondensation , 2011 .

[15]  Jie Chen,et al.  DNA binding, cytotoxicity, and apoptotic-inducing activity of ruthenium(II) polypyridyl complex. , 2010, Acta biochimica et biophysica Sinica.

[16]  Matthew T. Hunley,et al.  Synthesis of Precision Ionic Polyolefins Derived from Ionic Liquids , 2010 .

[17]  Jianhui Wang,et al.  Ferrocene Redox Controlled Reversible Immobilization of Ruthenium Carbene in Ionic Liquid: A Versatile Catalyst for Ring‐Closing Metathesis , 2009 .

[18]  Ju Hyun Kim,et al.  In Situ Activation of a Latent Ruthenium–Carbene Complex in Ionic Liquid and Its Application in Ring‐Closing Metathesis , 2009 .

[19]  B. Frerich,et al.  Monolithische Polymere als Trägermaterial für Zellkultivierung, Zelldifferenzierung und Tissue‐Engineering , 2008 .

[20]  M. Buchmeiser,et al.  Monolithic polymers for cell cultivation, differentiation, and tissue engineering. , 2008, Angewandte Chemie.

[21]  P. Śledź,et al.  Olefin metathesis in ionic liquids. , 2008, Chemical Society reviews.

[22]  James K. Leonard,et al.  Semicrystalline Lysine Functionalized Precision Polyolefins , 2008 .

[23]  E. Berda,et al.  Inducing Pendant Group Interactions in Precision Polyolefins: Synthesis and Thermal Behavior , 2008 .

[24]  M. Masubuchi,et al.  Synthesis of Imidazolium-TaggedRuthenium Carbene Complex: Remarkable Activity and Reusability inRegard to Olefin Metathesis in Ionic Liquids , 2008 .

[25]  S. Nolan,et al.  Ionic Liquid Anchored “Boomerang” Catalysts Bearing Saturated and Unsaturated NHCs: Recyclability in Biphasic Media for Cross-Metathesis , 2008 .

[26]  H. Plenio,et al.  Acyclic Diene Metathesis Polymerization of Divinylarenes and Divinylferrocenes with Grubbs-Type Olefin Metathesis Catalysts , 2008 .

[27]  Seda Keskin,et al.  A review of ionic liquids towards supercritical fluid applications , 2007 .

[28]  H. Olivier-Bourbigou,et al.  Ionic imidazolium containing ruthenium complexes and olefin metathesis in ionic liquids , 2007 .

[29]  R. Grubbs,et al.  Efficient removal of ruthenium byproducts from olefin metathesis products by simple aqueous extraction. , 2007, Organic letters.

[30]  S. Rucker,et al.  Linear Copolymers of Ethylene and Polar Vinyl Monomers via Olefin Metathesis−Hydrogenation: Synthesis, Characterization, and Comparison to Branched Analogues , 2007 .

[31]  R. Alamo,et al.  Precision ethylene/vinyl bromide polymers , 2007 .

[32]  B. Wunderlich,et al.  Crystallization and melting of a branched polyethylene with precisely controlled chemical structure , 2006 .

[33]  M. Buchmeiser,et al.  Ring-Opening Metathesis Polymerization (ROMP) in Ionic Liquids: Scope and Limitations , 2006 .

[34]  B. Ondruschka,et al.  Metathesis of 1‐Octene in Ionic Liquids and Other Solvents: Effects of Substrate Solubility, Solvent Polarity and Impurities , 2006 .

[35]  D. Williams,et al.  Highly Selective Metathesis of 1-Octene in Ionic Liquids , 2006 .

[36]  Xianhai Lv,et al.  Olefin self-cross-metathesis catalyzed by the second-generation Grubbs carbene complex in room temperature ionic liquids , 2006 .

[37]  M. Mauduit,et al.  Olefin metathesis in room temperature ionic liquids using imidazolium-tagged ruthenium complexes , 2005 .

[38]  G. Georg,et al.  A convenient method to remove ruthenium byproducts from olefin metathesis reactions using polymer-bound triphenylphosphine oxide (TPPO) , 2005, Molecular Diversity.

[39]  M. Mauduit,et al.  Ring-closing metathesis in biphasic BMI.PF6 ionic liquid/toluene medium: a powerful recyclable and environmentally friendly process. , 2004, Chemical communications.

[40]  L. Kustov,et al.  Metathesis of hex-1-ene in ionic liquids catalyzed by WCl6 , 2004 .

[41]  G. Wegner,et al.  Morphology and packing behavior of model ethylene/propylene copolymers with precise methyl branch placement , 2004 .

[42]  L. Kustov,et al.  Metathesis of hex-1-ene in ionic liquids , 2004 .

[43]  Qingwei Yao,et al.  Olefin metathesis in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate using a recyclable Ru catalyst: remarkable effect of a designer ionic tag. , 2003, Angewandte Chemie.

[44]  M. Mauduit,et al.  An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. , 2003, Journal of the American Chemical Society.

[45]  B. Kim,et al.  An efficient method for removal of ruthenium byproducts from olefin metathesis reactions. , 2003, Organic letters.

[46]  H. Olivier-Bourbigou,et al.  Alkene metathesis catalysis in ionic liquids with ruthenium allenylidene salts. , 2002, Chemical communications.

[47]  R. Buijsman,et al.  Ruthenium-catalyzed olefin metathesis in ionic liquids. , 2001, Organic letters.

[48]  D. Powell,et al.  “Perfect Comb” ADMET Graft Copolymers , 2001 .

[49]  G. Georg,et al.  A convenient method for the efficient removal of ruthenium byproducts generated during olefin metathesis reactions. , 2001, Organic letters.

[50]  M. Watson,et al.  Functionalized polyethylene via acyclic diene metathesis polymerization: Effect of precise placement of functional groups , 2000 .

[51]  M. Watson,et al.  Ethylene/Vinyl Acetate Copolymers via Acyclic Diene Metathesis Polymerization. Examining the Effect of “Long” Precise Ethylene Run Lengths , 2000 .

[52]  K. Wagener,et al.  Carbosilane/carbosiloxane-based ADMET homopolymers and copolymers possessing latent reactivity , 2000 .

[53]  K. Wagener,et al.  Precisely Controlled Methyl Branching in Polyethylene via Acyclic Diene Metathesis (ADMET) Polymerization , 2000 .

[54]  M. Watson,et al.  Tandem Homogeneous Metathesis/Heterogeneous Hydrogenation: Preparing Model Ethylene/CO2 and Ethylene/CO Copolymers , 2000 .

[55]  K. Wagener,et al.  Germanium-containing polymers via acyclic diene metathesis , 1999 .

[56]  K. Wagener,et al.  Investigation of organoboronates in metathesis polymerization , 1999 .

[57]  R. Grubbs,et al.  Purification technique for the removal of ruthenium from olefin metathesis reaction products , 1999 .

[58]  Robert H. Grubbs,et al.  Relative Reaction Rates of Olefin Substrates with Ruthenium(II) Carbene Metathesis Initiators1 , 1998 .

[59]  K. Wagener,et al.  Direct Synthesis of Well-Defined Alcohol-Functionalized Polymers via Acyclic Diene Metathesis (ADMET) Polymerization , 1998 .

[60]  K. Wagener,et al.  Acyclic metathesis polymerization: the olefin metathesis reaction of 1,5-hexadiene and 1,9-decadiene , 1987 .