Error Bounds for the Numerical Integration of Functions with Limited Smoothness
暂无分享,去创建一个
[1] K. Petras. Positivity of Gauss-Kronrod Formulae for a Certain Ultraspherical Weight Function , 1999 .
[2] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[3] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[4] A. Ghizzetti,et al. Generalized quadrature formulae and questions of convergence , 1970 .
[5] L. Trefethen. Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics) , 2012 .
[6] H. Ohanian,et al. The linear approximation , 2013 .
[7] A. Stroud,et al. Nodes and Weights of Quadrature Formulas , 1965 .
[8] G. Pólya,et al. Über die Konvergenz von Quadraturverfahren , 1933 .
[9] K. Petras. Asymptotic Behaviour of Peanokernels of Fixed Order , 1988 .
[10] Siegfried Filippi. Angenäherte Tschebyscheff-Approximation einer Stammfunktion — eine Modifikation des Verfahrens von Clenshaw und Curtis , 1964 .
[11] Shuhuang Xiang,et al. On the Convergence Rates of Gauss and Clenshaw-Curtis Quadrature for Functions of Limited Regularity , 2012, SIAM J. Numer. Anal..