Bayesian structure learning in graphical models

We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, where the dimension p may be large. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure is given by the graphical lasso. In this paper, we consider a Bayesian approach to the problem. We use priors which put a mixture of a point mass at zero and certain absolutely continuous distribution on off-diagonal elements of the precision matrix. Hence the resulting posterior distribution can be used for graphical structure learning. The posterior convergence rate of the precision matrix is obtained and is shown to match the oracle rate. The posterior distribution on the model space is extremely cumbersome to compute using the commonly used reversible jump Markov chain Monte Carlo methods. However, the posterior mode in each graph can be easily identified as the graphical lasso restricted to each model. We propose a fast computational method for approximating the posterior probabilities of various graphs using the Laplace approximation approach by expanding the posterior density around the posterior mode. We also provide estimates of the accuracy in the approximation.

[1]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[2]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[3]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[4]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[5]  A. V. D. Vaart,et al.  Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.

[6]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[7]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[8]  Larry A. Wasserman,et al.  The huge Package for High-dimensional Undirected Graph Estimation in R , 2012, J. Mach. Learn. Res..

[9]  Harrison H. Zhou,et al.  Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.

[10]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[11]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[12]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[13]  S. Ghosal Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity , 2000 .

[14]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[15]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[16]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[17]  M. West,et al.  Sparse graphical models for exploring gene expression data , 2004 .

[18]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[19]  Subhashis Ghosal,et al.  Fast Bayesian model assessment for nonparametric additive regression , 2014, Comput. Stat. Data Anal..

[20]  Debdeep Pati,et al.  Posterior contraction in sparse Bayesian factor models for massive covariance matrices , 2012, 1206.3627.

[21]  G'erard Letac,et al.  Wishart distributions for decomposable graphs , 2007, 0708.2380.

[22]  E. Levina,et al.  Joint estimation of multiple graphical models. , 2011, Biometrika.

[23]  Subhashis Ghosal,et al.  Posterior convergence rates for estimating large precision matrices using graphical models , 2013, 1302.2677.

[24]  A. Atay-Kayis,et al.  A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models , 2005 .

[25]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[26]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[27]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[28]  J. Friedman,et al.  New Insights and Faster Computations for the Graphical Lasso , 2011 .

[29]  A. Roverato Cholesky decomposition of a hyper inverse Wishart matrix , 2000 .

[30]  Hao Wang,et al.  Bayesian Graphical Lasso Models and Efficient Posterior Computation , 2012 .

[31]  Carlos M. Carvalho,et al.  FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS , 2008, 0901.3267.

[32]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[33]  A. Dawid,et al.  Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models , 1993 .

[34]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[35]  M. Yuan,et al.  Efficient Empirical Bayes Variable Selection and Estimation in Linear Models , 2005 .

[36]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[37]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.