Bayesian structure learning in graphical models
暂无分享,去创建一个
[1] Steffen L. Lauritzen,et al. Graphical models in R , 1996 .
[2] Larry A. Wasserman,et al. The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..
[3] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[4] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[5] A. V. D. Vaart,et al. Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.
[6] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[7] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[8] Larry A. Wasserman,et al. The huge Package for High-dimensional Undirected Graph Estimation in R , 2012, J. Mach. Learn. Res..
[9] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[10] Adam J. Rothman,et al. Generalized Thresholding of Large Covariance Matrices , 2009 .
[11] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[12] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[13] S. Ghosal. Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity , 2000 .
[14] G. Casella,et al. The Bayesian Lasso , 2008 .
[15] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[16] Jianqing Fan,et al. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.
[17] M. West,et al. Sparse graphical models for exploring gene expression data , 2004 .
[18] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .
[19] Subhashis Ghosal,et al. Fast Bayesian model assessment for nonparametric additive regression , 2014, Comput. Stat. Data Anal..
[20] Debdeep Pati,et al. Posterior contraction in sparse Bayesian factor models for massive covariance matrices , 2012, 1206.3627.
[21] G'erard Letac,et al. Wishart distributions for decomposable graphs , 2007, 0708.2380.
[22] E. Levina,et al. Joint estimation of multiple graphical models. , 2011, Biometrika.
[23] Subhashis Ghosal,et al. Posterior convergence rates for estimating large precision matrices using graphical models , 2013, 1302.2677.
[24] A. Atay-Kayis,et al. A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models , 2005 .
[25] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[26] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[27] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[28] J. Friedman,et al. New Insights and Faster Computations for the Graphical Lasso , 2011 .
[29] A. Roverato. Cholesky decomposition of a hyper inverse Wishart matrix , 2000 .
[30] Hao Wang,et al. Bayesian Graphical Lasso Models and Efficient Posterior Computation , 2012 .
[31] Carlos M. Carvalho,et al. FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS , 2008, 0901.3267.
[32] Olivier Ledoit,et al. A well-conditioned estimator for large-dimensional covariance matrices , 2004 .
[33] A. Dawid,et al. Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models , 1993 .
[34] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[35] M. Yuan,et al. Efficient Empirical Bayes Variable Selection and Estimation in Linear Models , 2005 .
[36] D. Harville. Matrix Algebra From a Statistician's Perspective , 1998 .
[37] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.