On the Regularity Method for Hypergraphs

1 Density TheoremsSzemeredi’s Density TheoremDensity Theorems of Furstenberg and Katznelson2 An Extremal Hypergraph problemConnection to the Density TheoremsSzemeredi’s Regularity Lemma for GraphsSolution of the Extremal Problem for Graphs3 Regularity Method for HypergraphsHistoryRegularity LemmaCounting Lemma

[1]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[2]  H. Furstenberg,et al.  A density version of the Hales-Jewett theorem , 1991 .

[3]  Saharon Shelah,et al.  Primitive recursive bounds for van der Waerden numbers , 1988 .

[4]  Vojtech Rödl,et al.  An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..

[5]  Andrew Thomason,et al.  Pseudo-random hypergraphs , 1989, Discret. Math..

[6]  Vojtech Rödl,et al.  Counting Small Cliques in 3-uniform Hypergraphs , 2005, Comb. Probab. Comput..

[7]  Fan Chung Graham,et al.  Quasi-Random Hypergraphs , 1990, Random Struct. Algorithms.

[8]  Yoshiharu Kohayakawa,et al.  Hereditary Properties of Triple Systems , 2003, Combinatorics, Probability and Computing.

[9]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[10]  Endre Szemerédi,et al.  A statistical theorem of set addition , 1994, Comb..

[11]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[12]  Vojtech Rödl,et al.  The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..

[13]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[14]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[15]  Paul Erdös,et al.  On Some Sequences of Integers , 1936 .

[16]  Vojtech Rödl,et al.  Integer and fractional packings in dense 3-uniform hypergraphs , 2003, Random Struct. Algorithms.

[17]  Imre Z. Ruzsa,et al.  Generalized arithmetical progressions and sumsets , 1994 .

[18]  A. Hales,et al.  Regularity and Positional Games , 1963 .

[19]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[20]  Vojtech Rödl,et al.  Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.

[21]  Jozef Skokan,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006 .

[22]  Vojtěch Rödl,et al.  A structural generalization of the Ramsey theorem , 1977 .

[23]  Jozef Skokan,et al.  Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005 .

[24]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[25]  Vojtech Rödl,et al.  The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..

[26]  Yoshiharu Kohayakawa,et al.  Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.

[27]  Vitaly Bergelson,et al.  Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .