From local volatility to local Lévy models

We define the class of local Lévy processes. These are Lévy processes time changed by an inhomogeneous local speed function. The local speed function is a deterministic function of time and the level of the process itself. We show how to reverse engineer the local speed function from traded option prices of all strikes and maturities. The local Lévy processes generalize the class of local volatility models. Closed forms for local speed functions for a variety of cases are also presented. Numerical methods for recovery are also described.

[1]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[2]  S. Kou,et al.  FIRST PASSAGE TIMES OF A JUMP DIFFUSION PROCESS , 2002 .

[3]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[4]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[5]  P. A. Meyer,et al.  Un Cours sur les Intégrales Stochastiques , 2002 .

[6]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[7]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[8]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[9]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[10]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[11]  I. Gyöngy Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .

[12]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[13]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[14]  M. Yor,et al.  Sur la loi des temps locaux browniens pris en un temps exponentiel , 1988 .

[15]  S. Levy,et al.  Elements of functional analysis , 1970 .

[16]  P. Meyer,et al.  Théorie des martingales , 1980 .

[17]  Marc Yor,et al.  Time Changes for Lévy Processes , 2001 .

[18]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[19]  Bruno Dupire Pricing with a Smile , 1994 .

[20]  Making Markov Martingales Meet Marginals , 2001 .

[21]  Hui Wang,et al.  First passage times of a jump diffusion process , 2003, Advances in Applied Probability.