Performance of a Multisensor Smart Ring to Evaluate Sleep: In-Lab and Home-Based Evaluation of Generalized and Personalized Algorithms.

STUDY OBJECTIVES Wearable sleep technology has rapidly expanded across the consumer market due to advances in technology and increased interest in personalized sleep assessment to improve health and mental performance. We tested the performance of a novel device, the Happy Ring, alongside other commercial wearables (Actiwatch 2, Fitbit Charge 4, Whoop 3.0, Oura Ring V2), against in-lab polysomnography (PSG) and an at-home EEG-derived sleep monitoring device, the Dreem 2 Headband. METHODS 36 healthy adults with no diagnosed sleep disorders and no recent use of medications or substances known to affect sleep pattern were assessed across 77 nights. Subjects participated in a single night of in-lab PSG and 2 nights of at-home data collection. The Happy Ring includes sensors for skin conductance, movement, heart rate, and skin temperature. The Happy Ring utilized two machine-learning derived scoring algorithms: a "generalized" algorithm that applied broadly to all users, and a "personalized" algorithm that adapted to individual subjects' data. Epoch-by-epoch analyses compared the wearable devices to in-lab PSG and to at-home EEG Headband. RESULTS Compared to in-lab PSG, the "generalized" and "personalized" algorithms demonstrated good sensitivity (94% and 93%, respectively) and specificity (70% and 83%, respectively). The Happy Personalized model demonstrated a lower bias and more narrow limits of agreement across Bland-Altman measures. CONCLUSION The Happy Ring performed well at home and in the lab, especially regarding sleep/wake detection. The personalized algorithm demonstrated improved detection accuracy over the generalized approach and other devices, suggesting that adaptable, dynamic algorithms can enhance sleep detection accuracy.