Multiple description trellis coded quantization

We present a construction of multiple description trellis coded quantizers. We use the tensor product of trellises to build a trellis which is applicable to multiple description coding. The problems of index assignment and set partitioning for the resulting trellis are considered. The Viterbi algorithm provides the best path for encoding and the design procedure utilizes a generalized Lloyd algorithm. The encoding process simultaneously generates all the transmitted sequences. Furthermore, the complexity of the scheme is almost independent of the rate. The quantizer provides remarkable performance with little encoding complexity.

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  Abbas El Gamal,et al.  Achievable rates for multiple descriptions , 1982, IEEE Trans. Inf. Theory.

[3]  Toby Berger,et al.  New results in binary multiple descriptions , 1987, IEEE Trans. Inf. Theory.

[4]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[5]  Michael T. Orchard,et al.  Multiple description image coding for noisy channels by pairing transform coefficients , 1997, Proceedings of First Signal Processing Society Workshop on Multimedia Signal Processing.

[6]  Michael T. Orchard,et al.  Redundancy rate-distortion analysis of multiple description coding using pairwise correlating transforms , 1997, Proceedings of International Conference on Image Processing.

[7]  Michael W. Marcellin,et al.  Progressive transmission in trellis coded quantization-based image coders , 1997, Proceedings of International Conference on Image Processing.

[8]  Vinay A. Vaishampayan,et al.  Design of multiple description scalar quantizers , 1993, IEEE Trans. Inf. Theory.

[9]  H. Witsenhausen,et al.  Source coding for multiple descriptions II: A binary source , 1981, The Bell System Technical Journal.

[10]  Hamid Jafarkhani,et al.  Successively refinable trellis coded quantization , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[11]  Jaroslaw Domaszewicz,et al.  Design of entropy-constrained multiple-description scalar quantizers , 1994, IEEE Trans. Inf. Theory.

[12]  Rudolf Ahlswede,et al.  The rate-distortion region for multiple descriptions without excess rate , 1985, IEEE Trans. Inf. Theory.

[13]  L. Ozarow,et al.  On a source-coding problem with two channels and three receivers , 1980, The Bell System Technical Journal.

[14]  A. Wyner,et al.  Source coding for multiple descriptions , 1980, The Bell System Technical Journal.

[15]  Hamid Jafarkhani,et al.  Adaptive image coding using spectral classification , 1998, IEEE Trans. Image Process..

[16]  A. Calderbank,et al.  On reducing granular distortion in multiple description quantization , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[17]  Michael W. Marcellin,et al.  Trellis coded quantization of memoryless and Gauss-Markov sources , 1990, IEEE Trans. Commun..

[18]  Hamid Jafarkhani,et al.  Entropy-constrained successively refinable scalar quantization , 1997, Proceedings DCC '97. Data Compression Conference.

[19]  Michael W. Marcellin,et al.  Comparison of different methods of classification in subband coding of images , 1997, IEEE Trans. Image Process..

[20]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .