Integrated microwave photonics

Recent advances in photonic integration have propelled microwave photonic technologies to new heights. The ability to interface hybrid material platforms to enhance light–matter interactions has led to the development of ultra-small and high-bandwidth electro-optic modulators, low-noise frequency synthesizers and chip signal processors with orders-of-magnitude enhanced spectral resolution. On the other hand, the maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfigurability similar to electronic devices. Here, we review these recent advances and discuss the impact of these new frontiers for short- and long-term applications in communications and information processing. We also take a look at the future perspectives at the intersection of integrated microwave photonics and other fields including quantum and neuromorphic photonics.This Review discusses recent advances of microwave photonic technologies and their applications in communications and information processing, as well as their potential implementations in quantum and neuromorphic photonics.

[1]  Yang Liu,et al.  Link Performance Optimization of Chip-Based Si3N4 Microwave Photonic Filters , 2018, Journal of Lightwave Technology.

[2]  Marc Sorel,et al.  Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics , 2014, 1405.5794.

[3]  Michal Lipson,et al.  Breaking the Loss Limitation of On-chip High-confinement Resonators , 2016, 1609.08699.

[4]  F. Blache,et al.  55GHz EAM bandwidth and beyond in InP active-passive photonic integration platform , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[5]  Paul A. Morton,et al.  Ultra low phase noise, high power, hybrid lasers for RF mixing and optical sensing applications , 2017, 2017 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP).

[6]  José Capmany,et al.  RF Engineering Meets Optoelectronics , 2015 .

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  David Marpaung,et al.  Tunable microwave photonic phase shifter using on-chip stimulated Brillouin scattering , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[9]  Yang Liu,et al.  Lossless and high-resolution RF photonic notch filter. , 2016, Optics letters.

[10]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[11]  Jeff Hecht,et al.  The bandwidth bottleneck that is throttling the Internet , 2016, Nature.

[12]  Jacob B Khurgin,et al.  Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si. , 2016, Optics express.

[13]  C. Roeloffzen,et al.  Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. , 2011, Optics express.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Guifang Li,et al.  Few-mode fibre-optic microwave photonic links , 2017, Light, science & applications.

[16]  L. Maleki Sources: The optoelectronic oscillator , 2011 .

[17]  John E. Bowers,et al.  Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon , 2016 .

[18]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[19]  Fabrizio Berizzi,et al.  A fully photonics-based coherent radar system , 2014, Nature.

[20]  脳室内造影剤残存と起立性低血圧 : 日本循環器学会第25回東海・第1回北陸合同地方会総会 , 1970 .

[21]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[22]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[23]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[24]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[25]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[26]  A. Weiner,et al.  Comb-based radiofrequency photonic filters with rapid tunability and high selectivity , 2011, Nature Photonics.

[27]  P. Rakich,et al.  Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides , 2013, Nature communications.

[28]  Paul R. Prucnal,et al.  Integrated Microwave Photonic Circuit for Self-Interference Cancellation , 2017, IEEE Transactions on Microwave Theory and Techniques.

[29]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[30]  J. Capmany,et al.  Integrated optoelectronic oscillator. , 2018 .

[31]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[32]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[33]  M. Qi,et al.  Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring , 2014, Journal of Lightwave Technology.

[34]  Alan Y. Liu,et al.  Heterogeneous Silicon Photonic Integrated Circuits , 2016, Journal of Lightwave Technology.

[35]  Fei Zeng,et al.  Photonic Generation of Ultrawideband Signals , 2007, Journal of Lightwave Technology.

[36]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[37]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[38]  Roelof Bernardus Timens,et al.  Low-Loss Si3N4 TriPleX Optical Waveguides: Technology and Applications Overview , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  G. Li,et al.  Optical intensity modulators for digital and analog applications , 2003 .

[40]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[41]  C. Roeloffzen,et al.  290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[42]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[43]  Daniel Pérez,et al.  Silicon Photonics Rectangular Universal Interferometer , 2017 .

[44]  Robert A. Minasian,et al.  Photonic signal processing of microwave signals , 2006 .

[45]  Frederic Boeuf,et al.  Efficient low-loss InGaAsP/Si hybrid MOS optical modulator , 2017, Nature Photonics.

[46]  Benjamin J. Eggleton,et al.  On-chip stimulated Brillouin scattering , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[47]  A. Weiner,et al.  Comb-Based RF Photonic Filters Based on Interferometric Configuration and Balanced Detection , 2014, Journal of Lightwave Technology.

[48]  D. Miller,et al.  Unscrambling light—automatically undoing strong mixing between modes , 2015, Light: Science & Applications.

[49]  Jianping Yao,et al.  Silicon Photonic Integrated Optoelectronic Oscillator for Frequency-Tunable Microwave Generation , 2018, Journal of Lightwave Technology.

[50]  D. Marpaung,et al.  Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity , 2014, 1412.4236.

[51]  J. Capmany,et al.  A monolithic integrated photonic microwave filter , 2016, Nature Photonics.

[52]  David Hillerkuss,et al.  Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna , 2015, Nano letters.

[53]  Tin Komljenovic,et al.  Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V. , 2017, Optics express.

[54]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2017, Nature.

[55]  John Michael Wyrwas Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation , 2012 .

[56]  A.J. Seeds,et al.  Microwave Photonics , 2006, Journal of Lightwave Technology.

[57]  C. Xiong,et al.  Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. , 2012, Nano letters.

[58]  Wolfgang Freude,et al.  Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration , 2016 .

[59]  Oskar Painter,et al.  Optical transduction and routing of microwave phonons in cavity-optomechanical circuits , 2016, Nature Photonics.

[60]  Yang Liu,et al.  Advanced Integrated Microwave Signal Processing With Giant On-Chip Brillouin Gain , 2017, Journal of Lightwave Technology.

[61]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[62]  A. Nirmalathas,et al.  Fiber-Wireless Networks and Subsystem Technologies , 2010, Journal of Lightwave Technology.

[63]  Leimeng Zhuang,et al.  On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. , 2011, Optics express.

[64]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[65]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[66]  Roberto Morandotti,et al.  RF Photonics: An Optical Microcombs’ Perspective , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[67]  B. Ortega,et al.  A tutorial on microwave photonic filters , 2006, Journal of Lightwave Technology.

[68]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[69]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[70]  Yang Liu,et al.  Signal interference RF photonic bandstop filter. , 2016, Optics express.

[71]  T. Ozawa,et al.  Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics , 2015, 1510.03910.

[72]  Ming Li,et al.  A fully reconfigurable photonic integrated signal processor , 2016, Nature Photonics.

[73]  Hiroshi Kato,et al.  40-GHz electro-optic polarization modulator for fiber optic communications systems , 2004, Photonics North.

[74]  Rajeev Bansal Going Beyond a Selfie [Microwave Surfing] , 2015 .

[75]  B. Eggleton,et al.  Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits , 2013 .

[76]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[77]  B. Guan,et al.  Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter. , 2011, Optics express.

[78]  J. Campbell,et al.  High-power, high-linearity photodiodes , 2014, 26th International Conference on Indium Phosphide and Related Materials (IPRM).

[79]  I. Gasulla,et al.  Integrable microwave filter based on a photonic crystal delay line , 2012, Nature Communications.

[80]  Raphaël Van Laer,et al.  Interaction between light and highly confined hypersound in a silicon photonic nanowire , 2014, Nature Photonics.

[81]  C. Roeloffzen,et al.  Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing. , 2011, Optics express.

[82]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[83]  R. Soref,et al.  Reconfigurable lattice mesh designs for programmable photonic processors and universal couplers , 2016, 2016 18th International Conference on Transparent Optical Networks (ICTON).

[84]  D. Marpaung On-Chip Photonic-Assisted Instantaneous Microwave Frequency Measurement System , 2013, IEEE Photonics Technology Letters.

[85]  David Marpaung,et al.  RF Engineering Meets Optoelectronics: Progress in Integrated Microwave Photonics , 2015, IEEE Microwave Magazine.

[86]  Minghao Qi,et al.  Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper , 2010 .

[87]  J. Fandiño,et al.  Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter. , 2013, Optics letters.

[88]  José Capmany,et al.  Software-defined reconfigurable microwave photonics processor. , 2015, Optics express.

[89]  Zach DeVito,et al.  Opt , 2017 .

[90]  Weifeng Zhang,et al.  Silicon-Based Integrated Microwave Photonics , 2016, IEEE Journal of Quantum Electronics.

[91]  Peter T. Rakich,et al.  RF-Photonic Filters via On-Chip Photonic–Phononic Emit–Receive Operations , 2017, Journal of Lightwave Technology.

[92]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[93]  Hyoung-Jun Kim,et al.  Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering. , 2016, Optics express.

[94]  C. Roeloffzen,et al.  Silicon nitride microwave photonic circuits. , 2013, Optics express.

[95]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[96]  K. Vahala,et al.  Microwave synthesizer using an on-chip Brillouin oscillator , 2013, Nature Communications.

[97]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[98]  J. Capmany,et al.  Graphene Integrated Microwave Photonics , 2014, Journal of Lightwave Technology.

[99]  Ke Li,et al.  Multipurpose silicon photonics signal processor core , 2017, Nature Communications.

[100]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[101]  David Marpaung,et al.  Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. , 2016, Optics letters.

[102]  Peter T. Rakich,et al.  Large Brillouin amplification in silicon , 2015, Nature Photonics.

[103]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[104]  Jianping Yao,et al.  An integrated parity-time symmetric wavelength-tunable single-mode microring laser , 2017, Nature Communications.

[105]  Richard V. Penty,et al.  An introduction to InP-based generic integration technology , 2014 .

[106]  Yang Liu,et al.  All-optimized integrated RF photonic notch filter. , 2017, Optics letters.

[107]  Charles Howard Cox,et al.  Analog Optical Links: Theory and Practice , 2006 .

[108]  Hiroshi Fukuda,et al.  Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator , 2017, Nature Photonics.

[109]  Heming Wang,et al.  Bridging ultrahigh-Q devices and photonic circuits , 2017, Nature Photonics.

[110]  Jeremy L O'Brien,et al.  2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS) , 2010 .

[112]  Y.Liu,et al.  Compact Brillouin devices through hybrid integration on silicon , 2017, 1702.05233.

[113]  K. Neyts,et al.  Nanophotonic Pockels modulators on a silicon nitride platform , 2018, Nature Communications.

[114]  R. S. Guzzon,et al.  Programmable Photonic Microwave Filters Monolithically Integrated in InP–InGaAsP , 2011, Journal of Lightwave Technology.

[115]  Jianping Yao,et al.  Microwave photonics , 2022, Science China Information Sciences.

[116]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[117]  Weifeng Zhang,et al.  A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing , 2018, Nature Communications.

[118]  Jian Wang,et al.  Mode-locked dark pulse Kerr combs in normal-dispersion microresonators , 2015, Nature Photonics.

[119]  José Capmany,et al.  Microwave photonics combines two worlds , 2007 .

[120]  Jian Wang,et al.  Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip , 2015, Nature communications.

[121]  S. Fathpour,et al.  Compact Lithium Niobate Electrooptic Modulators , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[122]  W.J. Chappell,et al.  High-$Q$ Fully Reconfigurable Tunable Bandpass Filters , 2009, IEEE Transactions on Microwave Theory and Techniques.

[123]  Jonathan Nagy,et al.  Highly linear ring modulator from hybrid silicon and lithium niobate. , 2015, Optics express.

[124]  J. Bowers,et al.  Ultra-low-loss Ta 2 O 5 -core/SiO 2 -clad planar waveguides on Si substrates , 2017 .

[125]  Wei Li,et al.  Observation of parity-time symmetry in microwave photonics , 2018, Light: Science & Applications.

[126]  José Capmany,et al.  Integrated microwave photonics , 2013 .

[127]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[128]  Kyunghun Han,et al.  High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation , 2016 .

[129]  Kartik Srinivasan,et al.  Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits , 2015, Nature Photonics.

[130]  Weifeng Zhang,et al.  On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter. , 2018, Optics letters.

[131]  Jianping Yao,et al.  Parity-time–symmetric optoelectronic oscillator , 2018, Science Advances.

[132]  David Marpaung,et al.  Nonlinear integrated microwave photonics , 2013, 2013 IEEE International Topical Meeting on Microwave Photonics (MWP).

[133]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[134]  David A. B. Miller,et al.  All-optical mode unscrambling on a silicon photonic chip , 2015 .

[135]  Ivana Gasulla,et al.  Microwave photonics: The programmable processor , 2016 .