Statistics of Extremes

Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas.

[1]  Jonathan A. Tawn,et al.  Self-consistent estimation of conditional multivariate extreme value distributions , 2014, J. Multivar. Anal..

[2]  Raphael Huser,et al.  Space–time modelling of extreme events , 2012, 1201.3245.

[3]  Caroline Keef,et al.  Spatial risk assessment for extreme river flows , 2009 .

[4]  C. Varin On composite marginal likelihoods , 2008 .

[5]  Anthony Ledford,et al.  A new class of models for bivariate joint tails , 2009 .

[6]  Jonathan A. Tawn,et al.  Modelling non‐stationary extremes with application to surface level ozone , 2009 .

[7]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[8]  D. Dupuis Exceedances over High Thresholds: A Guide to Threshold Selection , 1999 .

[9]  Stephan Morgenthaler,et al.  Robust weighted likelihood estimators with an application to bivariate extreme value problems , 2002 .

[10]  B. Shaby,et al.  Bayesian spatial extreme value analysis to assess the changing risk of concurrent high temperatures across large portions of European cropland , 2012 .

[11]  Edgar Kaufmann Penultimate Approximations in Extreme Value Theory , 2000 .

[12]  Jonathan A. Tawn,et al.  Statistical Methods for Multivariate Extremes: An Application to Structural Design , 1994 .

[13]  J. L. Wadsworth,et al.  A new representation for multivariate tail probabilities , 2013, 1312.5442.

[14]  Sidney I. Resnick,et al.  Extreme values of independent stochastic processes , 1977 .

[15]  C. Zhou,et al.  On spatial extremes: With application to a rainfall problem , 2008, 0807.4092.

[16]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[17]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[18]  Jonathan A. Tawn,et al.  Extreme Value Analysis of a Large Designed Experiment: A Case Study in Bulk Carrier Safety , 2001 .

[19]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[20]  M. Ivette Gomes,et al.  Approximation by Penultimate Extreme Value Distributions , 1998 .

[21]  Chen Zhou,et al.  Exceedance probability of the integral of a stochastic process , 2012, J. Multivar. Anal..

[22]  Laurens de Haan,et al.  Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.

[23]  Anthony C. Davison,et al.  Model misspecification in peaks over threshold analysis , 2010, 1010.1357.

[24]  Jonathan A. Tawn,et al.  An extreme value analysis for the investigation into the sinking of the M. V. Derbyshire. , 2003 .

[25]  N. Tajvidi,et al.  Multivariate Generalized Pareto Distributions , 2006 .

[26]  Stuart G. Coles,et al.  Extremes of Markov chains with tail switching potential , 2003 .

[27]  Anthony C. Davison,et al.  Threshold modeling of extreme spatial rainfall , 2013 .

[28]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[29]  Daniel Cooley,et al.  A sum characterization of hidden regular variation with likelihood inference via expectation-maximization , 2014 .

[30]  Jun Li,et al.  Thresholding Events of Extreme in Simultaneous Monitoring of Multiple Risks , 2009 .

[31]  A. Ledford,et al.  Diagnostics for dependence within time series extremes , 2003 .

[32]  J. Hüsler Maxima of normal random vectors: between independence and complete dependence , 1989 .

[33]  Lee Fawcett,et al.  Improved estimation for temporally clustered extremes , 2007 .

[34]  Sidney I. Resnick,et al.  Conditioning on an extreme component: Model consistency with regular variation on cones , 2008, 0805.4373.

[35]  Sidney I. Resnick,et al.  Hidden regular variation and the rank transform , 2005, Advances in Applied Probability.

[36]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[37]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[38]  Jennifer L. Wadsworth,et al.  Likelihood-based procedures for threshold diagnostics and uncertainty in extreme value modelling , 2012 .

[39]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[40]  M. Ivette Gomes,et al.  A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .

[41]  T. Hsing On some estimates based on sample behavior near high level excursions , 1993 .

[42]  C. Field,et al.  Robust estimation of extremes , 1998 .

[43]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .

[44]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[45]  Sidney I. Resnick,et al.  Hidden Regular Variation, Second Order Regular Variation and Asymptotic Independence , 2002 .

[46]  Jun Yan,et al.  El Niño–Southern Oscillation influence on winter maximum daily precipitation in California in a spatial model , 2011 .

[47]  Malcolm R Leadbetter,et al.  On a basis for 'Peaks over Threshold' modeling , 1991 .

[48]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[49]  M. Schlather,et al.  Estimation of Hüsler–Reiss distributions and Brown–Resnick processes , 2012, 1207.6886.

[50]  Philip Jonathan,et al.  Threshold modelling of spatially dependent non‐stationary extremes with application to hurricane‐induced wave heights , 2011 .

[51]  R. Huser,et al.  Statistical Modeling and Inference for Spatio-Temporal Extremes , 2013 .

[52]  Jonathan A. Tawn,et al.  Modelling Dependence within Joint Tail Regions , 1997 .

[53]  M. R. Leadbetter,et al.  On Exceedance Point Processes for Stationary Sequences under Mild Oscillation Restrictions , 1989 .

[54]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[55]  A Latent Process Model for Temporal Extremes , 2014 .

[56]  J. Tawn,et al.  Efficient inference for spatial extreme value processes associated to log-Gaussian random functions , 2014 .

[57]  Malcolm R Leadbetter,et al.  Extremes and local dependence in stationary sequences , 1983 .

[58]  Jonathan A. Tawn,et al.  Models for the extremes of Markov chains , 1998 .

[59]  Alan E. Gelfand,et al.  Continuous Spatial Process Models for Spatial Extreme Values , 2010 .

[60]  Saralees Nadarajah,et al.  Asymptotics of Maxima of Discrete Random Variables , 2002 .

[61]  Sidney I. Resnick,et al.  Limit Laws for Random Vectors with an Extreme Component , 2005, math/0502324.

[62]  M. Schlather,et al.  On the Normalized Spectral Representation of Max-Stable Processes on a Compact Set , 2013, 1310.1813.

[63]  Martin Schlather,et al.  A construction principle for multivariate extreme value distributions , 2011 .

[64]  L. Haan,et al.  The generalized Pareto process; with a view towards application and simulation , 2012, 1203.2551.

[65]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[66]  Conditional expectations of brownian functionals and their applications , 1989 .

[67]  Richard E. Chandler,et al.  Inference for clustered data using the independence loglikelihood , 2007 .

[68]  Jonathan A. Tawn,et al.  A conditional approach for multivariate extreme values (with discussion) , 2004 .

[69]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[70]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[71]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[72]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[73]  Debbie J Dupuis Ozone Concentrations: A Robust Analysis of Multivariate Extremes , 2005, Technometrics.

[74]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[75]  Jonathan A. Tawn,et al.  Modelling the distribution of the cluster maxima of exceedances of subasymptotic thresholds , 2012 .

[76]  Anthony C. Davison,et al.  Spatial modeling of extreme snow depth , 2011, 1111.7091.

[77]  Mathieu Ribatet,et al.  Functional regular variations, Pareto processes and peaks over threshold , 2015 .

[78]  Alan E. Gelfand,et al.  Hierarchical modeling for extreme values observed over space and time , 2009, Environmental and Ecological Statistics.

[79]  Frost Data: A Case Study on Extreme Values of Non-Stationary Sequences , 1984 .

[80]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[81]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[82]  Scott A. Sisson,et al.  Detection of non-stationarity in precipitation extremes using a max-stable process model , 2011 .

[83]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[84]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[85]  Anthony C. Davison,et al.  A mixture model for multivariate extremes , 2007 .

[86]  Marco Oesting,et al.  Simulation of Brown–Resnick processes , 2012 .

[87]  Vartan Choulakian,et al.  Goodness-of-Fit Tests for the Generalized Pareto Distribution , 2001, Technometrics.

[88]  Lee Fawcett,et al.  Estimating return levels from serially dependent extremes , 2012 .

[89]  Richard L. Smith,et al.  Markov chain models for threshold exceedances , 1997 .

[90]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[91]  Léo R. Belzile,et al.  Multivariate Extreme Value Distributions , 2015 .

[92]  Anthony C. Davison,et al.  Spectral Density Ratio Models for Multivariate Extremes , 2014 .

[93]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .

[94]  Aristidis K. Nikoloulopoulos,et al.  Extreme value properties of multivariate t copulas , 2009 .

[95]  Anthony C. Davison,et al.  Geostatistics of extremes , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[96]  Simon Guillotte,et al.  Non‐parametric Bayesian inference on bivariate extremes , 2009, 0911.3270.

[97]  Statistical Inference in an Extremal Markovian Model , 1990 .

[98]  Armelle Guillou,et al.  A diagnostic for selecting the threshold in extreme value analysis , 2001 .

[99]  Anthony Ledford,et al.  An Alternative Point Process Framework for Modeling Multivariate Extreme Values , 2011 .

[100]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[101]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[102]  Thomas Opitz,et al.  Efficient inference and simulation for elliptical Pareto processes , 2013, 1401.0168.

[103]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[104]  Enrique Castillo Extreme value theory in engineering , 1988 .

[105]  Marc G. Genton,et al.  On the likelihood function of Gaussian max-stable processes , 2011 .

[106]  Brian J Reich,et al.  A HIERARCHICAL MAX-STABLE SPATIAL MODEL FOR EXTREME PRECIPITATION. , 2013, The annals of applied statistics.

[107]  Jonathan A. Tawn,et al.  Exploiting occurrence times in likelihood inference for componentwise maxima , 2005 .

[108]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[109]  Tailen Hsing,et al.  Extremal Index Estimation for a Weakly Dependent Stationary Sequence , 1993 .

[110]  T. Hsing A Case Study of Ozone Pollution with XTREMES , 1997 .

[111]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[112]  J. Stedinger,et al.  Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data , 2000 .

[113]  Caroline Keef,et al.  Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model , 2013, J. Multivar. Anal..

[114]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[115]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[116]  Exact simulation of Brown-Resnick random fields , 2014 .

[117]  Tailen Hsing,et al.  On the characterization of certain point processes , 1987 .

[118]  L. Haan,et al.  On optimising the estimation of high quantiles of a probability distribution , 2003 .

[119]  Jonathan A. Tawn,et al.  Trend estimation in extremes of synthetic North Sea surges , 2007 .

[120]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[121]  B. Shaby,et al.  A Hierarchical Model for Serially-Dependent Extremes: A Study of Heat Waves in the Western US , 2014 .

[122]  J. Hüsler,et al.  Maxima of Poisson-like variables and related triangular arrays , 1997 .

[123]  T. Mann The Black Swan , 1954 .

[124]  A. SABOURIN,et al.  Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization , 2014, Comput. Stat. Data Anal..

[125]  Tailen Hsing,et al.  Estimating the parameters of rare events , 1991 .

[126]  Malcolm R Leadbetter,et al.  On the exceedance point process for a stationary sequence , 1988 .

[127]  Jonathan A. Tawn,et al.  Dependence modelling for spatial extremes , 2012 .

[128]  A. Davison,et al.  Composite likelihood estimation for the Brown–Resnick process , 2013 .

[129]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[130]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[131]  C. Anderson Contributions to the asymptotic theory of extreme values , 1971 .

[132]  Daniel Cooley,et al.  The pairwise beta distribution: A flexible parametric multivariate model for extremes , 2010, J. Multivar. Anal..

[133]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[134]  J. Segers,et al.  Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution , 2008, 0812.3485.

[135]  T. Opitz,et al.  Extremal tt processes: Elliptical domain of attraction and a spectral representation , 2012, J. Multivar. Anal..

[136]  A. Davison,et al.  Geostatistics of Dependent and Asymptotically Independent Extremes , 2013, Mathematical Geosciences.