Experimental Diels-Alder reactivities of cycloalkenones and cyclic dienes explained through transition-state distortion energies.

Quantum chemical calculations are used to investigate the experimentally measured reactivities of cyclic dienes and cycloalkenones in the Diels-Alder reaction. The interaction energies (red) are nearly constant; differences arise in changes in distortion energies of both dienophile (blue) and diene (green; see picture, Ea=activation energy; values in kcal mol-1). Copyright © 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.

[1]  F. Fringuelli,et al.  Diels-Alder reactions of cycloalkenones. 1. Preparation and structure of the adducts , 1982 .

[2]  William P. Jencks,et al.  A primer for the Bema Hapothle. An empirical approach to the characterization of changing transition-state structures , 1985 .

[3]  Andrew G. Leach,et al.  A Standard Set of Pericyclic Reactions of Hydrocarbons for the Benchmarking of Computational Methods: The Performance of ab Initio, Density Functional, CASSCF, CASPT2, and CBS-QB3 Methods for the Prediction of Activation Barriers, Reaction Energetics, and Transition State Geometries , 2003 .

[4]  K N Houk,et al.  Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. , 2008, Journal of the American Chemical Society.

[5]  R. Paton,et al.  Indolyne and aryne distortions and nucleophilic regioselectivites. , 2010, Journal of the American Chemical Society.

[6]  K. Houk,et al.  Transition state distortion energies correlate with activation energies of 1,4-dihydrogenations and Diels-Alder cycloadditions of aromatic molecules. , 2009, Journal of the American Chemical Society.

[7]  R. Sustmann,et al.  Mechanistic Aspects of Diels‐Alder Reactions: A Critical Survey , 1980 .

[8]  K. Houk,et al.  The origin of the halogen effect on reactivity and reversibility of Diels-Alder cycloadditions involving furan. , 2006, Angewandte Chemie.

[9]  Jun Hee Lee,et al.  Origins of stereoselectivity in the trans Diels-Alder paradigm. , 2010, Journal of the American Chemical Society.

[10]  S. Danishefsky,et al.  Cyclobutenone as a highly reactive dienophile: expanding upon Diels-Alder paradigms. , 2010, Journal of the American Chemical Society.

[11]  K. Houk,et al.  Diels-Alder exo selectivity in terminal-substituted dienes and dienophiles: experimental discoveries and computational explanations. , 2009, Journal of the American Chemical Society.

[12]  J. Sauer,et al.  Der Einfluß des Dien‐1,4‐Abstandes auf die Reaktivität bei Diels‐Alder‐Reaktionen , 1979 .

[13]  L. Hammett,et al.  Some Relations between Reaction Rates and Equilibrium Constants. , 1935 .

[14]  M. Oda,et al.  Isolation and characterization of pure cyclopropenone , 1972 .

[15]  J. Sauer,et al.  Mechanistische Aspekte der Diels‐Alder‐Reaktion: Ein kritischer Rückblick , 1980 .

[16]  F Matthias Bickelhaupt,et al.  The activation strain model of chemical reactivity. , 2010, Organic & biomolecular chemistry.

[17]  K N Houk,et al.  Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity. , 2007, Journal of the American Chemical Society.

[18]  W. Jencks General acid-base catalysis of complex reactions in water , 1972 .

[19]  K. Houk,et al.  Sources of error in DFT computations of C-C bond formation thermochemistries: pi-->sigma transformations and error cancellation by DFT methods. , 2008, Angewandte Chemie.