Quantum Computing and Communication Complexity

193

[1]  László Lovász,et al.  Lecture Notes on Evasiveness of Graph Properties , 2002, ArXiv.

[2]  Edith Hemaspaandra,et al.  Almost-Everywhere Superiority for Quantum Polynomial Time , 2002, Inf. Comput..

[3]  Alain Tapp,et al.  Quantum Entanglement and the Communication Complexity of the Inner Product Function , 1998, QCQC.

[4]  Miklos Santha On the Monte Carlo Boolean decision tree complexity of read-once formulae , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[5]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  M. Sipser,et al.  A Limit on the Speed of Quantum Computation for Insertion into an Ordered List , 1998 .

[8]  Richard Cleve,et al.  The query complexity of order-finding , 1999, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[9]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[10]  Carl W. Helstrom,et al.  Detection Theory and Quantum Mechanics (II) , 1967, Inf. Control..

[11]  Sean Hallgren,et al.  Quantum Fourier sampling simplified , 1999, STOC '99.

[12]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[13]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[14]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[15]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[16]  Miklós Ajtai,et al.  Determinism versus non-determinism for linear time RAMs (extended abstract) , 1999, STOC '99.

[17]  V. Roychowdhury,et al.  Optimal encryption of quantum bits , 2000, quant-ph/0003059.

[18]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[19]  Andris Ambainis,et al.  Dense quantum coding and a lower bound for 1-way quantum automata , 1998, STOC '99.

[20]  Kurt Mehlhorn,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .

[21]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[22]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[23]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[24]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[25]  Ramamohan Paturi,et al.  On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.

[26]  Miklos Santha On the Monte Carlo Boolean Decision Tree Complexity of Read-Once Formulae , 1995, Random Struct. Algorithms.

[27]  M. Mosca Quantum Searching Counting and Amplitude Ampli cation by Eigenvector Analysis , 1998 .

[28]  R. Feynman Simulating physics with computers , 1999 .

[29]  Sanjeev Khanna,et al.  Space Time Tradeoffs for Graph Properties , 1999, ICALP.

[30]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[31]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[32]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[33]  Stuart A. Kurtz,et al.  An oracle builder's toolkit , 2003, Inf. Comput..

[34]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[35]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[36]  A. K. Lenstra,et al.  The Development of the Number Field Sieve , 1993 .

[37]  Ronald de Wolf,et al.  A Lower Bound for Quantum Search of an Ordered List , 1999, Inf. Process. Lett..

[38]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[39]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[40]  Avi Wigderson,et al.  On read-once threshold formulae and their randomized decision tree complexity , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[41]  András Rácz,et al.  A Lower Bound for the Integer Element Distinctness Problem , 1991, Inf. Comput..

[42]  László Babai,et al.  Randomized simultaneous messages: solution of a problem of Yao in communication complexity , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[43]  Karl Zeller,et al.  Schwankung von Polynomen zwischen Gitterpunkten , 1964 .

[44]  Andrew Chi-Chih Yao Monotone Bipartite Graph Properties are Evasive , 1988, SIAM J. Comput..

[45]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[46]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[47]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[48]  C. Fuchs Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.

[49]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[50]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[51]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[52]  Richard Beigel,et al.  The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[53]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[54]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[55]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[56]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[57]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[58]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[59]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[60]  Ronald de Wolf,et al.  Characterization of Non-Deterministic Quantum Query and Quantum Communication Complexity , 2000, CCC.

[61]  Jürgen Bierbrauer,et al.  Almost Independent and Weakly Biased Arrays: Efficient Constructions and Cryptologic Applications , 2000, CRYPTO.

[62]  A. Wehrl General properties of entropy , 1978 .

[63]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[64]  Valerie King Lower bounds on the complexity of graph properties , 1988, STOC '88.

[65]  Stephen A. Fenner,et al.  Determining acceptance possibility for a quantum computation is hard for the polynomial hierarchy , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  Andris Ambainis,et al.  A Note on Quantum Black-Box Complexity of Almost all Boolean Functions , 1998, Inf. Process. Lett..

[67]  Jørn Justesen,et al.  Class of constructive asymptotically good algebraic codes , 1972, IEEE Trans. Inf. Theory.

[68]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[69]  Andris Ambainis,et al.  A better lower bound for quantum algorithms searching an ordered list , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[70]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[71]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[72]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[73]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[74]  P. Hajnal An Ω(n4/3) lower bound on the randomized complexity of graph properties , 1991 .

[75]  W. L. Nicholson,et al.  On the Normal Approximation to the Hypergeometric Distribution , 1956 .

[76]  Michael E. Saks,et al.  Probabilistic Boolean decision trees and the complexity of evaluating game trees , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[77]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[78]  Hartmut Klauck,et al.  Interaction in quantum communication and the complexity of set disjointness , 2001, STOC '01.

[79]  R. Feynman Quantum mechanical computers , 1986 .

[80]  Andrew M. Steane,et al.  Physicists triumph at 'Guess My Number' , 2000 .

[81]  Ronald L. Rivest,et al.  On Recognizing Graph Properties from Adjacency Matrices , 1976, Theor. Comput. Sci..

[82]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[83]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[84]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[85]  Dima Grigoriev,et al.  Randomized complexity lower bounds , 1998, STOC '98.

[86]  Carl W. Helstrom,et al.  Detection Theory and Quantum Mechanics , 1967, Inf. Control..

[87]  Gilles Brassard,et al.  Quantum Algorithm for the Collision Problem , 1997 .

[88]  Michael Werman,et al.  On computing majority by comparisons , 1991, Comb..

[89]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[90]  Ronald de Wolf,et al.  Quantum communication and complexity , 2002, Theor. Comput. Sci..

[91]  Michele Mosca,et al.  The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer , 1998, QCQC.

[92]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[93]  Amnon Ta-Shma,et al.  Classical versus quantum communication complexity , 1999, SIGA.

[94]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[95]  Ran Canetti,et al.  Bounds on tradeoffs between randomness and communication complexity , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[96]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[97]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[98]  Peter Hoyer,et al.  Multiparty quantum communication complexity. , 1997 .

[99]  Wim van Dam,et al.  Quantum Oracle Interrogation: Getting All Information for Almost Half the Price , 1999 .

[100]  I PaulBenioff Quantum Mechanical Hamiltonian Models of Turing Machines , 1982 .

[101]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[102]  Michael E. Saks,et al.  Communication Complexity and Combinatorial Lattice Theory , 1993, J. Comput. Syst. Sci..

[103]  Andrew Chi-Chih Yao Near-Optimal Time-Space Tradeoff for Element Distinctness , 1994, SIAM J. Comput..

[104]  Jan Neerbek,et al.  Quantum Complexities of Ordered Searching, Sorting, and Element Distinctness , 2001, ICALP.

[105]  Ronald de Wolf,et al.  Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[106]  Michael E. Saks,et al.  Super-linear time-space tradeoff lower bounds for randomized computation , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[107]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[108]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[109]  Thomas P. Hayes,et al.  On the Quantum Complexity of Majority , 1998 .

[110]  Noam Nisan CREW PRAMs and Decision Trees , 1991, SIAM J. Comput..

[111]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[112]  M. Sipser,et al.  Invariant quantum algorithms for insertion into an ordered list , 1999, quant-ph/9901059.

[113]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[114]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[115]  H. Lenstra,et al.  A rigorous time bound for factoring integers , 1992 .

[116]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[117]  Kurt Mehlhorn,et al.  Las Vegas is better than determinism in VLSI and distributed computing (Extended Abstract) , 1982, STOC '82.

[118]  René Schott,et al.  The Average-Case Complexity of Determining the Majority , 1997, SIAM J. Comput..

[119]  Edward M. Reingold,et al.  Determining the Majority , 1993, Inf. Process. Lett..

[120]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[121]  Andris Ambainis,et al.  Private quantum channels , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[122]  Hartmut Klauck,et al.  On quantum and probabilistic communication: Las Vegas and one-way protocols , 2000, STOC '00.

[123]  Michael E. Saks,et al.  A topological approach to evasiveness , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[124]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[125]  Dave Bacon,et al.  Classical simulation of quantum entanglement without local hidden variables , 2001 .

[126]  T. J. Rivlin,et al.  The growth of polynomials bounded at equally spaced points , 1992 .

[127]  Harry Buhrman,et al.  Quantum Entanglement and Communication Complexity , 2000, SIAM J. Comput..

[128]  Hartmut Klauck,et al.  Quantum Communication Complexity , 2022 .

[129]  Valerie King An Ω(n5/4) lower bound on the randomized complexity of graph properties , 1991, Comb..

[130]  Harry Buhrman,et al.  Quantum Computing and Communication Complexity , 2001, Bull. EATCS.

[131]  Andris Ambainis,et al.  The quantum communication complexity of sampling , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[132]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[133]  Ronald de Wolf,et al.  Lower Bounds for Quantum Search and Derandomization , 1998, ArXiv.

[134]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[135]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[136]  Elliott Ward Cheney,et al.  A Comparison of Uniform Approximations on an Interval and a Finite Subset Thereof , 1966 .

[137]  Frédéric Magniez,et al.  Quantum algorithms for element distinctness , 2000, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[138]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[139]  Jan Neerbek,et al.  Quantum Complexities of Ordered Searching, Sorting, and Element Distinctness , 2002, Algorithmica.

[140]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[141]  E. Kushilevitz,et al.  Communication Complexity: Basics , 1996 .

[142]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[143]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[144]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..