Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots

We investigate the size-dependent optical absorption coefficients of CdSe nanocrystals at both the band-edge and high within the absorption profile. The absorption properties in both of these regions must be self-consistent to ensure accuracy of the measured coefficients. By combining transmission electron microscopy and inductively coupled plasma−optical emission spectroscopy, we map out the optical absorption properties and establish reliable size-dependent band-edge calibration curves. The measured absorption properties are compared to a simple 0D confinement model, to classical theory based on light absorption by small particles in a dielectric medium and to state-of-the-art atomistic semiempirical pseudopotential modeling. The applicability of these newly established calibration curves is demonstrated by analyzing the nucleation and growth kinetics of CdSe nanocrystals in solution.

[1]  Ewa M. Goldys,et al.  Linear Absorption and Molar Extinction Coefficients in Direct Semiconductor Quantum Dots , 2008 .

[2]  Calvin Curtis,et al.  Absorption cross-section and related optical properties of colloidal InAs quantum dots. , 2005, The journal of physical chemistry. B.

[3]  A. Alivisatos,et al.  Molecular Weight, Osmotic Second Virial Coefficient, and Extinction Coefficient of Colloidal CdSe Nanocrystals , 2002 .

[4]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[5]  Ludovico Cademartiri,et al.  Size-dependent extinction coefficients of PbS quantum dots. , 2006, Journal of the American Chemical Society.

[6]  P. Mulvaney,et al.  From Cd-rich to se-rich--the manipulation of CdSe nanocrystal surface stoichiometry. , 2007, Journal of the American Chemical Society.

[7]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[8]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[9]  Alf Mews,et al.  Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. , 2005, Journal of the American Chemical Society.

[10]  Paul Mulvaney,et al.  Nucleation and growth of CdSe nanocrystals in a binary ligand system. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[11]  J. Callaway Quantum theory of the solid state , 1974 .

[12]  M. Schanne-Klein,et al.  Dielectric confinement and the linear and nonlinear optical properties of semiconductor-doped glasses , 1994 .

[13]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[14]  Alessandro Martucci,et al.  Highly Efficient Amplified Stimulated Emission from CdSe‐CdS‐ZnS Quantum Dot Doped Waveguides with Two‐Photon Infrared Optical Pumping , 2008 .

[15]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[16]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[17]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[18]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[19]  T. Lian,et al.  Exciton Dissociation in CdSe Quantum Dots by Hole Transfer to Phenothiazine , 2008 .

[20]  P. Mulvaney,et al.  Review of the Synthetic Chemistry Involved in the Production of Core/Shell Semiconductor Nanocrystals , 2007 .

[21]  S. Rosenthal,et al.  Surface Stoichiometry of CdSe Nanocrystals Determined by Rutherford Backscattering Spectroscopy , 2001 .

[22]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[23]  Lin-wang Wang,et al.  MANY-BODY PSEUDOPOTENTIAL THEORY OF EXCITONS IN INP AND CDSE QUANTUM DOTS , 1999 .

[24]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[25]  Xiaogang Peng,et al.  In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals , 2004 .

[26]  Tobias Vossmeyer,et al.  CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift , 1994 .

[27]  Wang,et al.  Local-density-derived semiempirical pseudopotentials. , 1995, Physical review. B, Condensed matter.

[28]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[29]  J. L. A. Alves,et al.  The effects of shape and size nonuniformity on the absorption spectrum of semiconductor quantum dots , 2004 .

[30]  Vikram C. Sundar,et al.  Color-selective semiconductor nanocrystal laser , 2002 .

[31]  N. Greenham,et al.  Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. , 2006, Physical chemistry chemical physics : PCCP.

[32]  P. Mulvaney,et al.  Nucleation and growth kinetics of CdSe nanocrystals in octadecene , 2004 .

[33]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[34]  Paul Mulvaney,et al.  Complete Quenching of CdSe Nanocrystal Photoluminescence by Single Dye Molecules , 2008 .

[35]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[36]  Preston T. Snee,et al.  Whispering‐Gallery‐Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite , 2005 .

[37]  Alf Mews,et al.  Supramolecular Complexes from CdSe Nanocrystals and Organic Fluorophors , 2001 .

[38]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .