Risk Management and Reliability Analysis in Civil Engineering

Recently the feasibility of non-deterministic methods for solving civil engineering problems is highlighted in the literature. Although, still deterministic methods are implemented in practice, non-deterministic methods can be seen as a complement to deterministic methods. In fact, failures of several important projects with relatively high factor of safeties underlined the importance of reliability analysis in Civil Engineering projects. High factor of safety does not necessarily mean high reliability more specifically in Geotechnical Engineering where soil behavior is complex [1]. For example, in a deep excavation problem or slope stability problem, since soil behavior may vary from a place to another place within the soil mass, one can not suggest the high reliability (or low probability of failure) based on a high factor of safety obtained from a deterministic analysis. There are several methods for performing reliability analysis, including random set (RS) method, random field method, Monte Carlo simulation, to name a few. Nevertheless, after obtaining the probability of failure, Pf, for a specific project using the aforementioned methods, the risk of a project can be estimated by multiplying the project Pf by the cost of the project failure (failure consequences of the project). Due to the increasing importance of the reliability analysis concept, this thematic issue is aimed to shed some light on the risk management and reliability analysis of Civil Engineering problems. The thematic issue comprises four papers which are briefly summarized in the following paragraphs. The implemented methods in the following papers can be used in other civil engineering problems (or other case studies) for further research.