CRITICAL ISSUES IN THE NUMERICAL TREATMENT OF THE PARAMETER ESTIMATION PROBLEMS IN IMMUNOLOGY

A robust and reliable parameter estimation is a critical issue for modeling in immunology. We developed a computational methodology for analysis of the best-fit parameter estimates and the information-theoretic assessment of the mathematical models formulated with ODEs. The core element of the methodology is a robust evaluation of the first and second derivatives of the model solution with respect to the model parameter values. The critical issue of the reliable estimation of the derivatives was addressed in the context of inverse problems arising in mathematical immunology. To evaluate the first and second derivatives of the ODE solution with respect to parameters, we implemented the variational equations-, automatic differentiation and complex-step derivative approximation methods. A comprehensive analysis of these approaches to the derivative approximations is presented to understand their advantages and limitations. Mathematics subject classification: 34K29, 92-08, 65K10.

[1]  Martin Meier-Schellersheim,et al.  Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number , 2011, Proceedings of the National Academy of Sciences.

[2]  G. Bocharov,et al.  A Systems Immunology Approach to Plasmacytoid Dendritic Cell Function in Cytopathic Virus Infections , 2010, PLoS pathogens.

[3]  D. Roose,et al.  Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data , 2009, Journal of mathematical biology.

[4]  M. Ridout Statistical Applications of the Complex-Step Method of Numerical Differentiation , 2009 .

[5]  Lawrence F. Shampine,et al.  Vectorized Solution of ODEs in Matlab , 2009, Scalable Comput. Pract. Exp..

[6]  Christopher T. H. Baker,et al.  Rival approaches to mathematical modelling in immunology , 2007 .

[7]  Lawrence F. Shampine,et al.  Accurate numerical derivatives in MATLAB , 2007, TOMS.

[8]  Dirk Roose,et al.  Numerical modelling of label-structured cell population growth using CFSE distribution data , 2007, Theoretical Biology and Medical Modelling.

[9]  Abdulwahab A. Abokhodair,et al.  Numerical tools for geoscience computations: Semiautomatic differentiation—SD , 2007 .

[10]  D. Roose,et al.  Computational analysis of CFSE proliferation assay , 2006, Journal of mathematical biology.

[11]  C. Baker,et al.  Computational approaches to parameter estimation and model selection in immunology , 2005 .

[12]  Fathalla A. Rihan,et al.  Computational modelling with functional differential equations: Identification, selection, and sensitivity , 2005 .

[13]  Roy M. Anderson,et al.  Underwhelming the Immune Response: Effect of Slow Virus Growth on CD8+-T-Lymphocyte Responses , 2004, Journal of Virology.

[14]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[15]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[16]  David W. Bacon,et al.  Modeling Ethylene/Butene Copolymerization with Multi‐site Catalysts: Parameter Estimability and Experimental Design , 2003 .

[17]  Peter Knabner,et al.  An efficient method for solving an inverse problem for the Richards equation , 2002 .

[18]  Athanasius F. M. Marée,et al.  Small variations in multiple parameters account for wide variations in HIV–1 set–points: a novel modelling approach , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[20]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[21]  S. Moolgavkar,et al.  A Method for Computing Profile-Likelihood- Based Confidence Intervals , 1988 .

[22]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[23]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .