Comparison of simulated hyperspectral HyspIRI and multispectral Landsat 8 and Sentinel-2 imagery for multi-seasonal, regional land-cover mapping

Abstract This study used simulated hyperspectral (HyspIRI) and multispectral (Landsat 8 OLI, Sentinel-2 MSI) satellite imagery to compare regional land-cover mapping capabilities (San Francisco Bay Area, California) within an analytical framework that included consistent reference data and classification rules. Imagery had the pixel resolution (30 m) and extent (30,000 km 2 ) of a Landsat scene, with multi-seasonal (spring, summer, fall) acquisitions from year 2013. Primary study objectives were to assess differences in map accuracy related to Multiple Endmember Spectral Mixture Analysis (MESMA) and Random Forests (RF) classifiers, spectral resolution (hyperspectral vs. multispectral), and temporal resolution (multi-seasonal vs. summer). The RF classifier generally outperformed MESMA by 1.1 to 9.0% overall accuracy, with the exception of summer HyspIRI reflectance data. There were no clear patterns in accuracy when comparing HyspIRI and simulated multispectral reflectance bands with RF and MESMA classifiers. With summer data, HyspIRI had significantly higher accuracy for MESMA (+ 5.5 to + 8.7%) and significantly lower accuracy for RF (− 9.7 to − 16.4%). There were no significant differences in accuracy when using multi-seasonal HyspIRI and multispectral data with RF or MESMA (

[1]  Matthew L. Clark,et al.  Mapping of land cover in northern California with simulated hyperspectral satellite imagery , 2016 .

[2]  D. Roberts,et al.  Relationships between dominant plant species, fractional cover and Land Surface Temperature in a Mediterranean ecosystem , 2015 .

[3]  Aniruddha Ghosh,et al.  A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[4]  D. Roberts,et al.  A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients , 2015 .

[5]  Rick L. Lawrence,et al.  The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection , 2015 .

[6]  M. Schildhauer,et al.  Monitoring plant functional diversity from space , 2016, Nature Plants.

[7]  Stefan Dech,et al.  Multi-sensor mapping of West African land cover using MODIS, ASAR and TanDEM-X/TerraSAR-X data , 2015 .

[8]  Suming Jin,et al.  Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information , 2015 .

[9]  Ben Somers,et al.  Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests , 2013 .

[10]  Xiaoxia Wang,et al.  Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data , 2014, Remote. Sens..

[11]  Balázs Deák,et al.  Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery , 2015, Remote. Sens..

[12]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[13]  R. Congalton A Quantitative Method to Test for Consistency and Correctness in Photointerpretation , 1983 .

[14]  Allison M. Leach,et al.  The global nitrogen cycle in the twenty-first century , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  G. Asner,et al.  Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation , 2017, Science.

[16]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[17]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[18]  Aditya Singh,et al.  Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery , 2015, Remote. Sens..

[19]  Gregory P. Asner,et al.  Organismic Remote Sensing for Tropical Forest Ecology and Conservation1,2 , 2015 .

[20]  Nicholas C. Coops,et al.  Virtual constellations for global terrestrial monitoring , 2015 .

[21]  Rick L. Lawrence,et al.  Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest) , 2006 .

[22]  T. Mitchell Aide,et al.  Land change for all municipalities in Latin America and the Caribbean assessed from 250-m MODIS imagery (2001–2010) , 2012 .

[23]  Christopher O. Justice,et al.  Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions , 2015, Remote. Sens..

[24]  A. Huete,et al.  Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission , 2013 .

[25]  J. R. Sveinsson,et al.  Mapping of hyperspectral AVIRIS data using machine-learning algorithms , 2009 .

[26]  Martin Herold,et al.  Spectral resolution requirements for mapping urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  Anthony C. Janetos,et al.  Research priorities in land use and land‐cover change for the Earth system and integrated assessment modelling , 2010 .

[28]  D. Roberts,et al.  Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil , 2007 .

[29]  L. Bruzzone,et al.  Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data , 2012 .

[30]  Edward J. Knight,et al.  Landsat-8 Operational Land Imager Design, Characterization and Performance , 2014, Remote. Sens..

[31]  D. Roberts,et al.  The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral , 2003 .

[32]  D. Roberts,et al.  Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems , 2016 .

[33]  D. Roberts,et al.  Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE , 2003 .

[34]  D. Roberts,et al.  Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales , 2005 .

[35]  Leonhard Blesius,et al.  Tree Species Classification Using Hyperspectral Imagery: A Comparison of Two Classifiers , 2016, Remote. Sens..

[36]  Martha C. Anderson,et al.  The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources , 2017 .

[37]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[38]  Jean-Michel Poggi,et al.  Variable selection using random forests , 2010, Pattern Recognit. Lett..

[39]  R. Green,et al.  An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities , 2015 .

[40]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[41]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[42]  A. Thorpe Mapping methane concentrations from a controlled release experiment using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) , 2014 .

[43]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[44]  Dar A. Roberts,et al.  Mapping Plant Functional Types at Multiple Spatial Resolutions Using Imaging Spectrometer Data , 2011 .

[45]  D. Roberts,et al.  Differentiating plant species within and across diverse ecosystems with imaging spectroscopy , 2015 .

[46]  Le Yu,et al.  Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data , 2016 .

[47]  J. V. Soares,et al.  Evaluation of hyperspectral data for pasture estimate in the Brazilian Amazon using field and imaging spectrometers , 2008 .

[48]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[49]  Joanne C. White,et al.  Optical remotely sensed time series data for land cover classification: A review , 2016 .

[50]  Patrick Hostert,et al.  The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation , 2015, Remote. Sens..

[51]  Gregory Asner,et al.  Hyperspectral Time Series Analysis of Native and Invasive Species in Hawaiian Rainforests , 2012, Remote. Sens..

[52]  Qi Li,et al.  Hyperspectral Imagery Classification Using Sparse Representations of Convolutional Neural Network Features , 2016, Remote. Sens..

[53]  D. Roberts,et al.  Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data , 2012 .

[54]  D. Thompson,et al.  Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI preparatory campaign , 2015 .

[55]  J. Féret,et al.  Mapping tropical forest canopy diversity using high‐fidelity imaging spectroscopy. , 2014, Ecological applications : a publication of the Ecological Society of America.

[56]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[57]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[58]  D. Lobell,et al.  A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation , 2000 .

[59]  Matthew L. Clark,et al.  One-Dimensional Convolutional Neural Network Land-Cover Classification of Multi-Seasonal Hyperspectral Imagery in the San Francisco Bay Area, California , 2017, Remote. Sens..

[60]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[61]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[62]  P. Atkinson,et al.  Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture , 2012 .

[63]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[64]  D. Roberts,et al.  A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper , 2004 .

[65]  Kenton Lee,et al.  Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance , 2014, Remote. Sens..

[66]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[67]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Trisalyn A. Nelson,et al.  Potential contributions of remote sensing to ecosystem service assessments , 2014 .

[69]  Pol Coppin,et al.  Endmember variability in Spectral Mixture Analysis: A review , 2011 .

[70]  G. Asner,et al.  Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations , 2002 .

[71]  A. D. Gregorio,et al.  Land Cover Classification System (LCCS): Classification Concepts and User Manual , 2000 .