An integrated diamond nanophotonics platform for quantum optics

Efficient interfaces between optical photons and quantum bits are fundamental building blocks for quantum networks and large-scale quantum computers. We demonstrate an integrated platform for scalable quantum optics based on color centers coupled to diamond nanodevices. First, we incorporate nitrogen-vacancy (NV) centers in diamond into hybrid nanophotonic crystal cavities. Despite our progress towards coupling the NV to cavity photons, we find that the NV-cavity interface is limited by the imperfections of the color center’s properties and its local environment. We approach this challenge first by characterizing and modifying the diamond surface to reduce the environmental noise affecting the NV optical transition. Subsequently, we develop a new approach that makes use of a quantum emitter with intrinsic protection from this noise: the silicon-vacancy (SiV) center in diamond. We demonstrate that SiVs introduced through ion implantation feature highly coherent optical transitions, even inside nanostructures. By placing SiV centers inside all-diamond photonic crystal cavities, we achieve strong SiV-photon coupling with a cooperativity of C > 20. Using this platform, we realize a quantum-optical switch controlled by the spin degree

[1]  P. Pehrsson,et al.  Oxidation of heated diamond C(100):H surfaces , 2000 .

[2]  D. Srivastava,et al.  Vibrational dynamics of the CH stretching mode of H-terminated diamond surfaces , 1997 .

[3]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[4]  Electron spin resonance of the R4/W6 defect in irradiated diamond , 1995 .

[5]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[6]  Collins,et al.  Vacancy-related centers in diamond. , 1992, Physical review. B, Condensed matter.

[7]  C. D. Clark,et al.  The 1.681 eV centre in polycrystalline diamond , 1991 .

[8]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[9]  Mikhail D. Lukin,et al.  Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation , 2015, 1512.03820.

[10]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[11]  E. Togan,et al.  Generation of heralded entanglement between distant hole spins , 2015, Nature Physics.

[12]  T. Rudolph,et al.  Optically generated 2-dimensional photonic cluster state from coupled quantum dots , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[13]  R. Reimann,et al.  Cavity-modified collective Rayleigh scattering of two atoms. , 2014, Physical review letters.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  V. Vuletić,et al.  Interaction between Atomic Ensembles and Optical Resonators: Classical Description , 2011, 1104.3594.

[16]  Daniel Riedel,et al.  Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond , 2017, 1703.00815.

[17]  M. Stutzmann,et al.  Chemical control of the charge state of nitrogen-vacancy centers in diamond , 2010, 1011.5109.

[18]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[19]  D. Twitchen,et al.  Electronic structure of the neutral silicon-vacancy center in diamond , 2018, Physical Review B.

[20]  Charles Santori,et al.  Near‐Surface Spectrally Stable Nitrogen Vacancy Centres Engineered in Single Crystal Diamond , 2012, Advanced materials.

[21]  K. Bobrov,et al.  Atomic-scale imaging of insulating diamond through resonant electron injection , 2001, Nature.

[22]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[23]  R. D. Ramsier,et al.  Electron-stimulated desorption: Principles and applications , 1991 .

[24]  Edo Waks,et al.  Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency , 2008 .

[25]  Hannes Bernien,et al.  Two-photon quantum interference from separate nitrogen vacancy centers in diamond. , 2011, Physical review letters.

[26]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[27]  Toshiro Inubushi,et al.  Germanium-Vacancy Single Color Centers in Diamond , 2015, Scientific Reports.

[28]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[29]  M. Seah Background subtraction: I. General behaviour of Tougaard-style backgrounds in AES and XPS , 1999 .

[30]  Sehee Lee,et al.  Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy , 2005 .

[31]  R. Blatt,et al.  Enhanced quantum interface with collective ion-cavity coupling. , 2014, Physical review letters.

[32]  Christian Hepp,et al.  Optical signatures of silicon-vacancy spins in diamond. , 2014, Nature communications.

[33]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[34]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[35]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[36]  Christian Hepp,et al.  All-optical formation of coherent dark states of silicon-vacancy spins in diamond. , 2014, Physical review letters.

[37]  A. Lechner Particle interactions with matter , 2018 .

[38]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[39]  J. M. Wilson,et al.  The diamond surface: I. The structure of the clean surface and the interaction with gases and metals , 1977 .

[40]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[41]  S. Shikata,et al.  University of Groningen Investigation of Surface Magnetic Noise by Shallow Spins in Diamond , 2014 .

[42]  Phillip John,et al.  The oxidation of (100) textured diamond , 2002 .

[43]  Atomic-resolution imaging of clean and hydrogen-terminated C(100)-(2×1) diamond surfaces using noncontact AFM , 2010 .

[44]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[45]  W. P. Ambrose,et al.  Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal , 1991, Nature.

[46]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[47]  Clark,et al.  Silicon defects in diamond. , 1995, Physical review. B, Condensed matter.

[48]  Ellis E. Whiting,et al.  An empirical approximation to the Voigt profile , 1968 .

[49]  K. Siegbahn Electron spectroscopy for atoms, molecules, and condensed matter. , 1982, Science.

[50]  Roger M. Wood,et al.  Optical properties of diamond: a data handbook: A.M. Zaitsev; University of Bochum, Germany, Springer, Berlin, 2001, p. 502, price £74.00 hardback, ISBN 3-540-66582-X , 2004 .

[51]  Yury Gogotsi,et al.  Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. , 2006, Journal of the American Chemical Society.

[52]  S. Tougaard Practical algorithm for background subtraction , 1989 .

[53]  Dirk Englund,et al.  Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond , 2018, Applied Physics Letters.

[54]  A S Sørensen,et al.  Dissipative preparation of entanglement in optical cavities. , 2010, Physical review letters.

[55]  A. Pasquarelli,et al.  Characterization of UV irradiated nanocrystalline diamond , 2008 .

[56]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[57]  K. Vahala Optical microcavities , 2003, Nature.

[58]  M. Markham,et al.  Coupling of NV centers to photonic crystal nanobeams in diamond. , 2013, Nano letters.

[59]  Christian Schneider,et al.  Ultrafast optical spin echo in a single quantum dot , 2010 .

[60]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[61]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[62]  J. Achard,et al.  Engineered arrays of nitrogen-vacancy color centers in diamond based on implantation of CN− molecules through nanoapertures , 2010, 1008.1483.

[63]  A. Yacoby,et al.  Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. , 2014, Nature nanotechnology.

[64]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[65]  T. Ohshima,et al.  Strongly coupled diamond spin qubits by molecular nitrogen implantation , 2013, 1311.0978.

[66]  M. Markham,et al.  Spectroscopy of surface-induced noise using shallow spins in diamond. , 2014, Physical review letters.

[67]  M. Stutzmann,et al.  Fermi level on hydrogen terminated diamond surfaces , 2003 .

[68]  Ying Li,et al.  Resource costs for fault-tolerant linear optical quantum computing , 2015, 1504.02457.

[69]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[70]  M. Markham,et al.  Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond , 2016, Nature Communications.

[71]  J. Végh On analyzing the intrinsic processes through the Shirley background correction procedure , 2005 .

[72]  Jasper Chan,et al.  Laser Cooling of an Optomechanical Crystal Resonator to Its Quantum Ground State of Motion , 2012 .

[73]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[74]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[75]  H. Höchst,et al.  New method for the analysis of reflection high-energy electron diffraction:α−Sn(001)and InSb(001) surfaces , 1983 .

[76]  E. Waks,et al.  A quantum phase switch between a single solid-state spin and a photon. , 2015, Nature nanotechnology.

[77]  M. Ferrari,et al.  XPS and UPS investigation of the diamond surface oxidation by UV irradiation , 2009 .

[78]  D. Hunger,et al.  Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity , 2016, 1606.00167.

[79]  T. Ishikawa,et al.  High resolution-high energy x-ray photoelectron spectroscopy using third-generation synchrotron radiation source, and its application to Si-high k insulator systems , 2003 .

[80]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[81]  Sauér,et al.  1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films. , 1994, Physical review. B, Condensed matter.

[82]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[83]  G. López,et al.  XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups , 1991 .

[84]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[85]  Dirk Englund,et al.  Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. , 2010, Nano letters.

[86]  P. Wang,et al.  Growth and in situ high-pressure reflection high energy electron diffraction monitoring of oxide thin films , 2013 .

[87]  J. J. Lander,et al.  Low energy electron diffraction study of the (111) diamond surface , 1966 .

[88]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[89]  K. Loh,et al.  Surface morphology of homoepitaxially grown (111), (001), and (110) diamond studied by low energy electron diffraction and reflection high-energy electron diffraction , 1999 .

[90]  J. Ristein,et al.  Electronic properties of diamond surfaces — blessing or curse for devices? , 2000 .

[91]  Wooyoung Hong,et al.  High quality-factor optical nanocavities in bulk single-crystal diamond , 2014, Nature Communications.

[92]  S. Bogdanović Diamond-based Fabry-Perot microcavities for quantum networks , 2017 .

[93]  John F. Kielkopf,et al.  New approximation to the Voigt function with applications to spectral-line profile analysis , 1973 .

[94]  D. Twitchen,et al.  Electron paramagnetic resonance studies of silicon-related defects in diamond , 2008 .

[95]  M. Lukin,et al.  Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. , 2016, Physical review letters.

[96]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[97]  F. Schmidt-Kaler,et al.  Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution , 2008 .

[98]  Howard J. Carmichael,et al.  An Open Systems Approach to Quantum Optics: Lectures Presented at the Universite Libre De Bruxelles, October 28 to November 4, 1991 , 1993 .

[99]  Annealing effects in H- and O-terminated P-doped diamond (111) surfaces , 2008 .

[100]  David F. Edwards,et al.  Infrared refractive index of diamond , 1981 .

[101]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[102]  Hyatt M. Gibbs,et al.  Scanning a photonic crystal slab nanocavity by condensation of xenon , 2005 .

[103]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[104]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[105]  János Végh,et al.  The Shirley background revised , 2006 .

[106]  F. Jelezko,et al.  Creation efficiency of nitrogen-vacancy centres in diamond , 2010 .

[107]  C. Degen,et al.  Radio-frequency magnetometry using a single electron spin. , 2012, Physical review letters.

[108]  G. Kresse,et al.  Atomic and electronic structure of diamond (111) surfaces II. (2 × 1) and (√3 × √3) reconstructions of the clean and hydrogen-covered three dangling-bond surfaces , 1996 .

[109]  Thomas Schenkel,et al.  Chip-scale nanofabrication of single spins and spin arrays in diamond. , 2010, Nano letters.

[110]  J. Feist,et al.  Coupling a Single Trapped Atom to a Nanoscale Optical Cavity , 2013, Science.

[111]  B. Goldberg,et al.  Light-induced spectral diffusion in single self-assembled quantum dots , 2000 .

[112]  Yumin Shen,et al.  Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals , 2008 .

[113]  J. Meijer,et al.  Generation of single color centers by focused nitrogen implantation , 2005 .

[114]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[115]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[116]  D. Miller,et al.  Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination? , 2002 .

[117]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[118]  Thomas Purdy,et al.  Bidirectional and efficient conversion between microwave and optical light , 2014 .

[119]  W. Grimson,et al.  Background Subtraction , 2009, Encyclopedia of Biometrics.

[120]  F. Himpsel,et al.  Surface states on reconstructed diamond (111) , 1981 .

[121]  R. Blatt,et al.  Heralded entanglement of two ions in an optical cavity. , 2013, Physical review letters.

[122]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[123]  G. Kresse,et al.  Structural and Electronic Properties of Clean and Hydrogenated Diamond (100) Surfaces , 1994 .

[124]  D. Castner,et al.  Regularization: A stable and accurate method for generating depth profiles from angle‐dependent XPS data , 1989 .

[125]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[126]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[127]  E. Hu,et al.  Increased negatively charged nitrogen-vacancy centers in fluorinated diamond , 2013 .

[128]  J. Wilson,et al.  The oxidation of diamond: the geometry and stretching frequency of carbonyl on the (100) surface. , 2003, Journal of the American Chemical Society.

[129]  Jonathan M. Kindem,et al.  Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals , 2015, Nature Communications.

[130]  N. D. Lisgarten,et al.  The measurement of inner potential for diamond, germanium and silicon , 1983 .

[131]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[132]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, 1212.2804.

[133]  D. Neamen Semiconductor physics and devices basic principles Copy , 2004 .

[134]  Mihir K. Bhaskar,et al.  A fiber-coupled diamond quantum nanophotonic interface , 2016, 1612.05285.

[135]  Fedor Jelezko,et al.  Increasing the coherence time of single electron spins in diamond by high temperature annealing , 2010 .

[136]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[137]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[138]  Jan Meijer,et al.  Creation of colour centres in diamond by collimated ion‐implantation through nano‐channels in mica , 2011 .

[139]  N. Stojilovic Why Can’t We See Hydrogen in X-ray Photoelectron Spectroscopy? , 2012 .

[140]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[141]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[142]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[143]  N. Sinitsyn,et al.  Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot , 2014, Nature Physics.

[144]  R. J. Wells,et al.  Rapid approximation to the Voigt/Faddeeva function and its derivatives , 1999 .

[145]  J. Song,et al.  Single-photon non-linear optics with a quantum dot in a waveguide , 2015, Nature communications.

[146]  L. Ley,et al.  HIGH-RESOLUTION SURFACE-SENSITIVE C 1S CORE-LEVEL SPECTRA OF CLEAN AND HYDROGEN-TERMINATED DIAMOND (100) AND (111) SURFACES , 1998 .

[147]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[148]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[149]  Arjyajyoti Goswami,et al.  The measurement of the inner potential of diamond , 1980 .

[150]  Norbert Kalb,et al.  A quantum gate between a flying optical photon and a single trapped atom , 2014, Nature.

[151]  G. Kubiak,et al.  Hydrogen chemisorption and the structure of the diamond C(100)-(2 × 1) surface , 1990 .

[152]  D. Goodwin,et al.  Growth on the reconstructed diamond (100) surface , 1993 .

[153]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[154]  W. Marsden I and J , 2012 .

[155]  M. Rayson,et al.  Vacancy-impurity complexes and limitations for implantation doping of diamond , 2005 .

[156]  C. Monroe,et al.  Quantum Connections. , 2016, Scientific American.

[157]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[158]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[159]  F. Jelezko,et al.  Tin-Vacancy Quantum Emitters in Diamond. , 2017, Physical review letters.

[160]  M. Sherwood,et al.  Decoherence of Near-Surface Nitrogen-Vacancy Centers Due to Electric Field Noise. , 2015, Physical review letters.

[161]  A. A. Fokin,et al.  Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers. , 2015, Nano letters (Print).

[162]  J. Maze,et al.  Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties , 2013, 1310.2137.

[163]  T. Ohshima,et al.  A silicon carbide room-temperature single-photon source. , 2013, Nature materials.

[164]  E. Hu,et al.  Coupling of Silicon-Vacancy Centers to a Single Crystal Diamond Cavity , 2012 .

[165]  Phonon networks with SiV centers in diamond waveguides , 2019 .

[166]  S. Tougaard In-depth concentration profile information through analysis of the entire XPS peak shape , 1988 .

[167]  L. Ley,et al.  The correlation between surface conductivity and adsorbate coverage on diamond as studied by infrared spectroscopy , 2001 .

[168]  Wolfgang Braun,et al.  Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth , 1999 .

[169]  Shui-Tong Lee,et al.  Modification of surface band bending of diamond by low energy argon and carbon ion bombardment , 1994 .

[170]  D. Twitchen,et al.  Optical properties of the neutral silicon split-vacancy center in diamond , 2011 .

[171]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[172]  S. Seal,et al.  Nature of the use of adventitious carbon as a binding energy standard , 1995 .

[173]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[174]  Cavity-stimulated Raman emission from a single quantum dot spin , 2014, 1402.4494.

[175]  M. Lukin,et al.  Long-distance entanglement distribution using individual atoms in optical cavities , 2015, 1504.03703.

[176]  H. J. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[177]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[178]  Naoki Shimizu,et al.  Journal of Electron Spectroscopy and Related Phenomena 101--103 (1999) 761--764 , 1999 .

[179]  M. Seah,et al.  Background subtraction: II. General behaviour of REELS and the Tougaard universal cross section in the removal of backgrounds in AES and XPS , 2000 .

[180]  Patrick Maletinsky,et al.  Integrated diamond networks for quantum nanophotonics. , 2011, Nano letters.

[181]  Á. Gali,et al.  Proper surface termination for luminescent near-surface NV centers in diamond. , 2014, Nano letters.

[182]  J. Borregaard,et al.  Heralded Quantum Gates with Integrated Error Detection in Optical Cavities , 2015, 1501.00956.

[183]  W. Moerner,et al.  Optical detection and spectroscopy of single molecules in a solid. , 1989, Physical review letters.

[184]  S. Hasegawa Reflection High-Energy Electron Diffraction , 2012 .

[185]  R. Morent,et al.  Comparison between XPS‐ and FTIR‐analysis of plasma‐treated polypropylene film surfaces , 2008 .

[186]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[187]  S. Zippilli,et al.  Nonlinear optics with two trapped atoms , 2007, 0708.1390.

[188]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[189]  A. Whitehead,et al.  EPR and optical studies on polycrystalline diamond films grown by chemical vapor deposition and annealed between 1100 and 1900 K , 1998 .

[190]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[191]  Jakob Reichel,et al.  Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. , 2013, Physical review letters.

[192]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[193]  Yoichiro Sato,et al.  Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperture-programmed desorption spectroscopy , 1993 .

[194]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[195]  P Lalanne,et al.  Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.

[196]  N. McIntyre,et al.  Adventitious carbon growth on aluminium and gold–aluminium alloy surfaces , 2002 .

[197]  T. Ando,et al.  Homoepitaxial diamond (001) thin film studied by reflection high-energy electron diffraction, contact atomic force microscopy, and scanning tunneling microscopy , 2000 .

[198]  L. Childress,et al.  A Fabry-Perot Microcavity for Diamond-Based Photonics , 2015, 1508.06588.

[199]  R. G. Beausoleil,et al.  Depletion of nitrogen‐vacancy color centers in diamond via hydrogen passivation , 2011, 1108.6078.

[200]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[201]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[202]  K. Maslakov,et al.  State of C-atoms on the modified nanodiamond surface , 2007 .

[203]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[204]  Jin-Cheng Zheng Oxygen-induced surface state on diamond (100) , 2001 .

[205]  Jones,et al.  The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex. , 1996, Physical review letters.

[206]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[207]  Aroosa Ijaz,et al.  Optical and microwave control of germanium-vacancy center spins in diamond , 2016, 1612.02947.

[208]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[209]  Marko Loncar,et al.  Strain engineering of the silicon-vacancy center in diamond , 2018, Physical Review B.

[210]  Á. Gali,et al.  Fluorine modification of the surface of diamondoids: A time-dependent density functional study , 2014 .

[211]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[212]  Stephan Ritter,et al.  Interference and dynamics of light from a distance-controlled atom pair in an optical cavity , 2016, Nature Photonics.

[213]  M. Doherty,et al.  Electronic structure of the negatively charged silicon-vacancy center in diamond , 2013, 1310.3131.

[214]  R. Nemanich,et al.  Surface cleaning, electronic states and electron affinity of diamond (100), (111) and (110) surfaces , 1998 .

[215]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[216]  A. Wallraff,et al.  Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate , 2014, Nature Communications.

[217]  A Faraon,et al.  Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[218]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[219]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[220]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[221]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[222]  M. Markham,et al.  Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing , 2011 .

[223]  T. Ohshima,et al.  Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation , 2014 .

[224]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[225]  Neil B. Manson,et al.  Electron–phonon processes of the silicon-vacancy centre in diamond , 2014, 1411.2871.

[226]  Zixin Wang,et al.  Evidence of Carboxyl Modification of Hydrogen-Free Diamond-Like Carbon Films Assisted by Radio Frequency Plasma in Vacuum , 2012 .

[227]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[228]  M. Seah Background subtraction III: The application of REELS data to background removal in AES and XPS , 2001 .

[229]  Neil B. Manson,et al.  Singlet levels of the NV− centre in diamond , 2014, 1407.6244.

[230]  S. Gsell,et al.  Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. , 2014, Nano letters.

[231]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[232]  H. Carmichael,et al.  Single-atom cavity-enhanced absorption. I. Photon statistics in the bad-cavity limit , 1988 .

[233]  J. Ristein Diamond surfaces: familiar and amazing , 2006 .

[234]  M. Atatüre,et al.  Quantum dot spin coherence governed by a strained nuclear environment , 2016, Nature Communications.

[235]  P. Oelhafen,et al.  Photoelectron spectroscopy study of natural (100), (110), (111) and CVD diamond surfaces , 1996 .

[236]  M. Lukin,et al.  Quantum optics with nitrogen-vacancy centers in diamond , 2015, 1504.05990.

[237]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[238]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[239]  Porezag,et al.  Stability, reconstruction, and electronic properties of diamond (100) and (111) surfaces. , 1993, Physical review. B, Condensed matter.

[240]  D D Awschalom,et al.  Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. , 2011, Physical review letters.

[241]  S. Öberg,et al.  On the diffusion of NV defects in diamond , 2012 .

[242]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[243]  P Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical Review Letters.

[244]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[245]  G. Agarwal,et al.  Simulating superradiance from higher-order-intensity-correlation measurements: Single atoms , 2015, 1508.02856.

[246]  B. Pate The diamond surface: Atomic and electronic structure , 1984 .

[247]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[248]  Mark Saffman,et al.  Quantum computing with neutral atoms , 2017, National science review.

[249]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[250]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[251]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[252]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[253]  Darrick E. Chang,et al.  Quantum nonlinear optics — photon by photon , 2014, Nature Photonics.

[254]  J. Végh The Shirley-equivalent electron inelastic scattering cross-section function , 2004 .

[255]  M. Orrit,et al.  Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. , 1990, Physical review letters.

[256]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[257]  Martin Fischer,et al.  Low-temperature investigations of single silicon vacancy colour centres in diamond , 2012, 1210.3201.

[258]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[259]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[260]  D. Awschalom,et al.  Probing surface noise with depth-calibrated spins in diamond. , 2014, Physical review letters.

[261]  G. Kubiak,et al.  The role of hydrogen on the diamond C(111)−(2 × 1) reconstruction , 1988 .

[262]  M. K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[263]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[264]  G. Kresse,et al.  Atomic and electronic structure of diamond (111) surfaces I. Reconstruction and hydrogen-induced de-reconstruction of the one dangling-bond surface , 1996 .

[265]  John C. Vickerman,et al.  Surface analysis : the principal techniques , 2009 .

[266]  Intermediate metastable structure of the C\{111\}/(1×1)H-C\{111\}/(2×1) surface phase transition , 1997 .

[267]  J. D. Thompson,et al.  Efficient fiber-optical interface for nanophotonic devices , 2014, 1409.7698.

[268]  Galli,et al.  Reconstruction of the diamond (111) surface. , 1992, Physical review letters.

[269]  A. Badolato,et al.  Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot. , 2009, Physical review letters.

[270]  T. R. Anthony,et al.  The production and annealing stages of the self-interstitial (R2) defect in diamond , 1999 .

[271]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[272]  Philip Hemmer,et al.  All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. , 2014, Physical review letters.

[273]  Pavel Sekatski,et al.  Flexible resources for quantum metrology , 2016, 1610.09999.

[274]  M. Lukin,et al.  Engineering a diamond spin-qubit with a nano-electro-mechanical system , 2017 .

[275]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[276]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[277]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[278]  Jacob M. Taylor,et al.  A coherent spin–photon interface in silicon , 2017, Nature.

[279]  Edo Waks,et al.  Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning. , 2011, Optics express.

[280]  B. Pate The diamond surface , 1984 .

[281]  J. Barreiro,et al.  Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. , 2013, Physical review letters.

[282]  R. Jones,et al.  Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces , 2006 .

[283]  Dirk Englund,et al.  Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities. , 2017, Physical review letters.

[284]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[285]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[286]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[287]  Bálint Aradi,et al.  Calculation ofthe transitions and migration of nitrogen and vacancy related defects,with implications on the formation of NV centers in bulk diamond , 2013, 1311.6598.

[288]  T. R. Anthony,et al.  ELECTRON-PARAMAGNETIC-RESONANCE MEASUREMENTS ON THE DIVACANCY DEFECT CENTER R4/W6 IN DIAMOND , 1999 .

[289]  Hafner,et al.  Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. , 1996, Physical review. B, Condensed matter.

[290]  C. Santori,et al.  Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation , 2010, 1001.5449.

[291]  P. Pehrsson,et al.  Oxidation of the hydrogenated diamond (100) surface , 2000 .

[292]  M. Kaniber,et al.  Mutual coupling of two semiconductor quantum dots via an optical nanocavity , 2009, 0912.3685.

[293]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[294]  A. T. Collins The Fermi level in diamond , 2002 .

[295]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[296]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[297]  D. Twitchen,et al.  Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes. , 2017, Physical review letters.