Numerische Mathematik Implicit standard Jacobi gives high relative accuracy

We prove that the Jacobi algorithm applied implicitly on a decomposition A = X DXT of the symmetric matrix A, where D is diagonal, and X is well conditioned, computes all eigenvalues of A to high relative accuracy. The relative error in every eigenvalue is bounded by O( κ(X)), where is the machine precision and κ(X) ≡ ‖X‖2 · ‖X−1‖2 is the spectral condition number of X . The eigenvectors are also computed accurately in the appropriate sense. We believe that this is the first algorithm to compute accurate eigenvalues of symmetric (indefinite) matrices that respects and preserves the symmetry of the problem and uses only orthogonal transformations. Mathematics Subject Classification (2000) 65F15 · 65G50 · 15A23

[1]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[2]  Qiang Ye Computing singular values of diagonally dominant matrices to high relative accuracy , 2008, Math. Comput..

[3]  Zlatko Drmac,et al.  New Fast and Accurate Jacobi SVD Algorithm. I , 2007, SIAM J. Matrix Anal. Appl..

[4]  Froilán M. Dopico,et al.  Accurate eigenvalues of certain sign regular matrices , 2007 .

[5]  Vjeran Hari,et al.  Convergence of a Block-Oriented Quasi-Cyclic Jacobi Method , 2007, SIAM J. Matrix Anal. Appl..

[6]  Zlatko Drmac,et al.  New Fast and Accurate Jacobi SVD Algorithm. II , 2007, SIAM J. Matrix Anal. Appl..

[7]  Julio Moro,et al.  Accurate Factorization and Eigenvalue Algorithms for Symmetric DSTU and TSC Matrices , 2006, SIAM J. Matrix Anal. Appl..

[8]  Froilán M. Dopico,et al.  Accurate Symmetric Rank Revealing and Eigendecompositions of Symmetric Structured Matrices , 2006, SIAM J. Matrix Anal. Appl..

[9]  Ilse C. F. Ipsen Special Issue on Accurate Solution Of Eigenvalue Problems , 2006, SIAM J. Matrix Anal. Appl..

[10]  Plamen Koev,et al.  Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials , 2006 .

[11]  Froilán M. Dopico,et al.  Perturbation Theory for Factorizations of LU Type through Series Expansions , 2005, SIAM J. Matrix Anal. Appl..

[12]  Plamen Koev,et al.  Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices , 2005, SIAM J. Matrix Anal. Appl..

[13]  V. Hari,et al.  Accelerating the SVD Block-Jacobi Method , 2005, Computing.

[14]  James Demmel,et al.  Accurate SVDs of weakly diagonally dominant M-matrices , 2004, Numerische Mathematik.

[15]  Froilán M. Dopico,et al.  An Orthogonal High Relative Accuracy Algorithm for the Symmetric Eigenproblem , 2003, SIAM J. Matrix Anal. Appl..

[16]  Ivan Slapničar,et al.  Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD , 2003 .

[17]  Ren-Cang Li,et al.  Relative perturbation theory: IV. sin 2θ theorems☆ , 2000 .

[18]  James Demmel Accurate Singular Value Decompositions of Structured Matrices , 2000, SIAM J. Matrix Anal. Appl..

[19]  Z. Drmač A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algorithm , 1999 .

[20]  Z. Drmač Accurate Computation of the Product-Induced Singular Value Decomposition with Applications , 1998 .

[21]  Ivan Slapničar,et al.  Componentwise Analysis of Direct Factorization of Real Symmetric and Hermitian Matrices , 1998 .

[22]  Ren-Cang Li,et al.  Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..

[23]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[24]  Zlatko Drmac,et al.  Implementation of Jacobi Rotations for Accurate Singular Value Computation in Floating Point Arithmetic , 1997, SIAM J. Sci. Comput..

[25]  J. Demmel,et al.  Computing the Singular Value Decomposition with High Relative Accuracy , 1997 .

[26]  Ilse C. F. Ipsen,et al.  Relative perturbation techniques for singular value problems , 1995 .

[27]  Roy Mathias Accurate Eigensystem Computations by Jacobi Methods , 1995, SIAM J. Matrix Anal. Appl..

[28]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[29]  Haesun Park,et al.  Fast Plane Rotations with Dynamic Scaling , 1994, SIAM J. Matrix Anal. Appl..

[30]  K. Veselié A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .

[31]  Ivan Slapničar,et al.  Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .

[32]  W. Gragg,et al.  On computing accurate singular values and eigenvalues of acyclic matrices , 1992 .

[33]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[34]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[35]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[36]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[37]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[38]  J. Barlow,et al.  Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .

[39]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[40]  W. Gentleman Error analysis of QR decompositions by Givens transformations , 1975 .

[41]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[42]  Herman H. Goldstine,et al.  The Jacobi Method for Real Symmetric Matrices , 1959, JACM.