Numerische Mathematik Implicit standard Jacobi gives high relative accuracy
暂无分享,去创建一个
[1] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[2] Qiang Ye. Computing singular values of diagonally dominant matrices to high relative accuracy , 2008, Math. Comput..
[3] Zlatko Drmac,et al. New Fast and Accurate Jacobi SVD Algorithm. I , 2007, SIAM J. Matrix Anal. Appl..
[4] Froilán M. Dopico,et al. Accurate eigenvalues of certain sign regular matrices , 2007 .
[5] Vjeran Hari,et al. Convergence of a Block-Oriented Quasi-Cyclic Jacobi Method , 2007, SIAM J. Matrix Anal. Appl..
[6] Zlatko Drmac,et al. New Fast and Accurate Jacobi SVD Algorithm. II , 2007, SIAM J. Matrix Anal. Appl..
[7] Julio Moro,et al. Accurate Factorization and Eigenvalue Algorithms for Symmetric DSTU and TSC Matrices , 2006, SIAM J. Matrix Anal. Appl..
[8] Froilán M. Dopico,et al. Accurate Symmetric Rank Revealing and Eigendecompositions of Symmetric Structured Matrices , 2006, SIAM J. Matrix Anal. Appl..
[9] Ilse C. F. Ipsen. Special Issue on Accurate Solution Of Eigenvalue Problems , 2006, SIAM J. Matrix Anal. Appl..
[10] Plamen Koev,et al. Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials , 2006 .
[11] Froilán M. Dopico,et al. Perturbation Theory for Factorizations of LU Type through Series Expansions , 2005, SIAM J. Matrix Anal. Appl..
[12] Plamen Koev,et al. Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices , 2005, SIAM J. Matrix Anal. Appl..
[13] V. Hari,et al. Accelerating the SVD Block-Jacobi Method , 2005, Computing.
[14] James Demmel,et al. Accurate SVDs of weakly diagonally dominant M-matrices , 2004, Numerische Mathematik.
[15] Froilán M. Dopico,et al. An Orthogonal High Relative Accuracy Algorithm for the Symmetric Eigenproblem , 2003, SIAM J. Matrix Anal. Appl..
[16] Ivan Slapničar,et al. Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD , 2003 .
[17] Ren-Cang Li,et al. Relative perturbation theory: IV. sin 2θ theorems☆ , 2000 .
[18] James Demmel. Accurate Singular Value Decompositions of Structured Matrices , 2000, SIAM J. Matrix Anal. Appl..
[19] Z. Drmač. A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algorithm , 1999 .
[20] Z. Drmač. Accurate Computation of the Product-Induced Singular Value Decomposition with Applications , 1998 .
[21] Ivan Slapničar,et al. Componentwise Analysis of Direct Factorization of Real Symmetric and Hermitian Matrices , 1998 .
[22] Ren-Cang Li,et al. Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..
[23] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[24] Zlatko Drmac,et al. Implementation of Jacobi Rotations for Accurate Singular Value Computation in Floating Point Arithmetic , 1997, SIAM J. Sci. Comput..
[25] J. Demmel,et al. Computing the Singular Value Decomposition with High Relative Accuracy , 1997 .
[26] Ilse C. F. Ipsen,et al. Relative perturbation techniques for singular value problems , 1995 .
[27] Roy Mathias. Accurate Eigensystem Computations by Jacobi Methods , 1995, SIAM J. Matrix Anal. Appl..
[28] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[29] Haesun Park,et al. Fast Plane Rotations with Dynamic Scaling , 1994, SIAM J. Matrix Anal. Appl..
[30] K. Veselié. A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .
[31] Ivan Slapničar,et al. Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .
[32] W. Gragg,et al. On computing accurate singular values and eigenvalues of acyclic matrices , 1992 .
[33] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[34] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[35] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[36] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[37] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[38] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[39] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[40] W. Gentleman. Error analysis of QR decompositions by Givens transformations , 1975 .
[41] G. Golub,et al. Linear least squares solutions by householder transformations , 1965 .
[42] Herman H. Goldstine,et al. The Jacobi Method for Real Symmetric Matrices , 1959, JACM.