Interplay between Smectic Ordering and Microphase Separation in a Series of Side-Group Liquid-Crystal Block Copolymers

Hierarchical ordering in a series of side-group liquid-crystal block copolymers was investigated in the bulk via differential scanning calorimetry (DSC), polarized light microscopy, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS). The diblock copolymers comprise a polystyrene block and a block of poly(methyl methacrylate) bearing a chiral biphenyl ester mesogenic unit linked to the backbone by a dodecyloxy spacer. A series of copolymers with different volume fractions of mesogenic block were prepared by atom transfer radical polymerization. Ordering of mesogens into a smectic phase is characterized by a period 3.5 nm. Glass transition temperatures and the clearing temperature for each sample were determined by DSC. Additional ordering occurs due to microphase separation of the block copolymer at a length scale of 22−27 nm, as confirmed by SAXS and SANS. The order−disorder transition was found to be coincident with the smectic−isotropic transition for a sample comprising PS c...