Electron–hole pair creation by atoms incident on a metal surface

Electron–hole pair creation by an adsorbate incident on a metal surface is described using ab initio methods. The approach starts with standard first principles electronic structure theory, and proceeds to combine classical, quantum oscillator, and time dependent density functional methods to provide a consistent description of the nonadiabatic energy transfer from adsorbate to substrate. Of particular interest is the conservation of the total energy at each level of approximation, and the importance of a spin transition as a function of the adsorbate/surface separation. Results are presented and discussed for H and D atoms incident on the Cu(111) surface.

[1]  J. W. Gadzuk On the Detection of Chemically-Induced Hot Electrons in Surface Processes: From X-ray Edges to Schottky Barriers , 2002 .

[2]  H. Suhl,et al.  Brownian motion model of the interactions between chemical species and metallic electrons: Bootstrap derivation and parameter evaluation , 1975 .

[3]  M. Persson,et al.  Calculations of the sticking coefficient of Ne on Cu(100) within the trajectory approximation , 1987 .

[4]  W. H. Weinberg,et al.  Direct detection of electron–hole pairs generated by chemical reactions on metal surfaces , 2000 .

[5]  D. Bird,et al.  Electronic damping of molecular motion at metal surfaces , 2001, 0909.5495.

[6]  P. Sautet,et al.  Surface temperature dependence of rotational excitation of H(2) scattered from Pd(111). , 2001, Physical review letters.

[7]  L. Bengtsson,et al.  The dynamics of H absorption in and adsorption on Cu(111) , 1998 .

[8]  O. Gunnarsson,et al.  Sticking probability on metal surfaces: Contribution from electron-hole-pair excitations , 1980 .

[9]  H. Nienhaus Electronic excitations by chemical reactions on metal surfaces , 2002 .

[10]  S. Holloway,et al.  The dissociation of diatomic molecules at surfaces , 1995 .

[11]  M. Persson,et al.  Electronic Damping of Atomic and Molecular Vibrations at Metal Surfaces , 1984 .

[12]  R. Kubo GENERALIZED CUMULANT EXPANSION METHOD , 1962 .

[13]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[14]  S. Holloway,et al.  Surface temperature dependence of the inelastic scattering of hydrogen molecules from metal surfaces. , 2001, Physical review letters.

[15]  Bo N. J. Persson,et al.  Dynamics of atomic adsorbates: hydrogen on Cu(111) , 1995 .

[16]  D. Langreth,et al.  ROLE OF INTRA-ADSORBATE COULOMB CORRELATIONS IN ENERGY TRANSFER AT METAL SURFACES , 1998 .

[17]  D. Langreth,et al.  Many-body phenomena at surfaces , 1984 .

[18]  M. Persson,et al.  Trajectory approximation calculations of the sticking coefficient of Ne on Cu(100) , 1987 .

[19]  W. H. Weinberg,et al.  Electron-Hole Pair Creation at Ag and Cu Surfaces by Adsorption of Atomic Hydrogen and Deuterium , 1999 .

[20]  K. Schönhammer Localized dynamic perturbations in metals: Fermion versus boson description , 1981 .

[21]  G. Toulouse,et al.  Localized dynamic perturbations in metals , 1971 .

[22]  R. Brako,et al.  Slowly varying time-dependent local perturbations in metals: a new approach , 1981 .

[23]  W. H. Weinberg,et al.  Chemically Induced Electronic Excitations at Metal Surfaces , 2001, Science.

[24]  P. Minnhagen Excitation probability in a time-dependent external potential , 1982 .

[25]  D. Bird,et al.  Energy loss of atoms at metal surfaces due to electron-hole pair excitations: first-principles theory of "chemicurrents". , 2002, Physical review letters.

[26]  M. Head‐Gordon,et al.  Molecular dynamics with electronic frictions , 1995 .

[27]  D. Hone,et al.  Localized time-dependent perturbations in metals : formalism and simple examples , 1976 .

[28]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.