The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress

[1]  P. Russell,et al.  Mre11 Dimers Coordinate DNA End Bridging and Nuclease Processing in Double-Strand-Break Repair , 2008, Cell.

[2]  R. Ghirlando,et al.  Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. , 2007, Molecular cell.

[3]  Anindya Dutta,et al.  Mcm10 and And-1/CTF4 recruit DNA polymerase α to chromatin for initiation of DNA replication , 2007 .

[4]  Xiaohua Wu,et al.  The Mre11-Rad50-Nbs1 Complex Acts Both Upstream and Downstream of Ataxia Telangiectasia Mutated and Rad3-related Protein (ATR) to Regulate the S-phase Checkpoint following UV Treatment* , 2007, Journal of Biological Chemistry.

[5]  R. Skibbens,et al.  Fork it over: the cohesion establishment factor Ctf7p and DNA replication , 2007, Journal of Cell Science.

[6]  John A Tainer,et al.  Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. , 2007, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[7]  David Collingwood,et al.  Replication in Hydroxyurea: It's a Matter of Time , 2007, Molecular and Cellular Biology.

[8]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[9]  Katsuhiko Shirahige,et al.  Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. , 2006, Molecular cell.

[10]  V. Costanzo,et al.  ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks , 2006, The EMBO journal.

[11]  Ricky D. Edmondson,et al.  GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks , 2006, Nature Cell Biology.

[12]  J. Bader,et al.  A DNA Integrity Network in the Yeast Saccharomyces cerevisiae , 2006, Cell.

[13]  S. Gasser,et al.  Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. , 2005, Genes & development.

[14]  L. Symington,et al.  Mutations in Mre11 Phosphoesterase Motif I That Impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 Complex Stability in Addition to Nuclease Activity , 2005, Genetics.

[15]  P. Pasero,et al.  Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. , 2005, Molecular cell.

[16]  A. Carr,et al.  Gross Chromosomal Rearrangements and Elevated Recombination at an Inducible Site-Specific Replication Fork Barrier , 2005, Cell.

[17]  R. Kolodner,et al.  Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. , 2005, DNA repair.

[18]  S. Gasser,et al.  Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance , 2005, The EMBO journal.

[19]  K. Sugimoto,et al.  Requirement of the Mre11 Complex and Exonuclease 1 for Activation of the Mec1 Signaling Pathway , 2004, Molecular and Cellular Biology.

[20]  Michael Lichten,et al.  Distribution and Dynamics of Chromatin Modification Induced by a Defined DNA Double-Strand Break , 2004, Current Biology.

[21]  R. Rothstein,et al.  Choreography of the DNA Damage Response Spatiotemporal Relationships among Checkpoint and Repair Proteins , 2004, Cell.

[22]  G. Oakley,et al.  Replication Protein A and the Mre11·Rad50·Nbs1 Complex Co-localize and Interact at Sites of Stalled Replication Forks* , 2004, Journal of Biological Chemistry.

[23]  J. Haber,et al.  Checkpoint-mediated control of replisome–fork association and signalling in response to replication pausing , 2004, Oncogene.

[24]  F. Uhlmann,et al.  Studies on Substrate Recognition by the Budding Yeast Separase* , 2004, Journal of Biological Chemistry.

[25]  Kyoko Yokomori,et al.  The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Kunihiro Matsumoto,et al.  ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. , 2003, Genes & development.

[27]  S. Gasser,et al.  DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1 , 2003, The EMBO journal.

[28]  B. Tye,et al.  Evidence for a Role of MCM (Mini-chromosome Maintenance)5 in Transcriptional Repression of Sub-telomeric and Ty-proximal Genes in Saccharomyces cerevisiae* , 2003, Journal of Biological Chemistry.

[29]  S. Elledge,et al.  Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. , 2003, Genes & development.

[30]  Caroline M. Li,et al.  Saccharomyces cerevisiae DNA Polymerase ε and Polymerase σ Interact Physically and Functionally, Suggesting a Role for Polymerase ε in Sister Chromatid Cohesion , 2003, Molecular and Cellular Biology.

[31]  Aaron Bensimon,et al.  Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. , 2002, Genes & development.

[32]  J. Tainer,et al.  The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair , 2002, Nature.

[33]  Kyungjae Myung,et al.  Maintenance of Genome Stability in Saccharomyces cerevisiae , 2002, Science.

[34]  N. Kleckner,et al.  ATR Homolog Mec1 Promotes Fork Progression, Thus Averting Breaks in Replication Slow Zones , 2002, Science.

[35]  S. Jackson,et al.  The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling , 2002, Nature Reviews Molecular Cell Biology.

[36]  T. Hirano The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. , 2002, Genes & development.

[37]  D. Gordenin,et al.  The Mre11 Complex Is Required for Repair of Hairpin-Capped Double-Strand Breaks and Prevention of Chromosome Rearrangements , 2002, Cell.

[38]  A. Tomkinson,et al.  Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. , 2001, Molecular cell.

[39]  P. Sung,et al.  DNA Structure-specific Nuclease Activities in theSaccharomyces cerevisiae Rad50·Mre11 Complex* , 2001, The Journal of Biological Chemistry.

[40]  Virginia A Zakian,et al.  The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres , 2001, Current Biology.

[41]  S. Jackson,et al.  The yeast Xrs2 complex functions in S phase checkpoint regulation. , 2001, Genes & development.

[42]  J. Diffley,et al.  Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint , 2001, Nature.

[43]  M. Bibikova,et al.  Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. , 2001, Molecular cell.

[44]  J. Petrini,et al.  A DNA damage response pathway controlled by Tel1 and the Mre11 complex. , 2001, Molecular cell.

[45]  F. Spencer,et al.  Saccharomyces cerevisiae CTF18 and CTF4 Are Required for Sister Chromatid Cohesion , 2001, Molecular and Cellular Biology.

[46]  S. Gygi,et al.  Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. , 2001, Molecular cell.

[47]  A Bensimon,et al.  Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains. , 2001, Nucleic acids research.

[48]  R. Kanaar,et al.  DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. , 2001, Nucleic acids research.

[49]  R. Kolodner,et al.  Suppression of Spontaneous Chromosomal Rearrangements by S Phase Checkpoint Functions in Saccharomyces cerevisiae , 2001, Cell.

[50]  S. Hiraga,et al.  Interactions between Mcm10p and other replication factors are required for proper initiation and elongation of chromosomal DNA replication in Saccharomyces cerevisiae , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[51]  K Nasmyth,et al.  Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. , 2000, Molecular cell.

[52]  R. Kolodner,et al.  Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants , 1999, Nature Genetics.

[53]  T. Paull,et al.  Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. , 1999, Genes & development.

[54]  C. Wittenberg,et al.  DNA Polymerase ε Catalytic Domains Are Dispensable for DNA Replication, DNA Repair, and Cell Viability , 1999 .

[55]  D. Leach,et al.  DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. , 1999, Nucleic acids research.

[56]  J. R. Ferguson,et al.  The Nuclease Activity of Mre11 Is Required for Meiosis but Not for Mating Type Switching, End Joining, or Telomere Maintenance , 1999, Molecular and Cellular Biology.

[57]  T. Ogawa,et al.  Complex Formation and Functional Versatility of Mre11 of Budding Yeast in Recombination , 1998, Cell.

[58]  T. Shibata,et al.  Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination , 1998, The EMBO journal.

[59]  J. Diffley,et al.  A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication , 1998, Nature.

[60]  B. Nelms,et al.  Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. , 1998, Genetics.

[61]  S. Elledge,et al.  Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. , 1998, Genes & development.

[62]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[63]  T. Paull,et al.  The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. , 1998, Molecular cell.

[64]  K. Nasmyth,et al.  Cohesins: Chromosomal Proteins that Prevent Premature Separation of Sister Chromatids , 1997, Cell.

[65]  S Povey,et al.  Dynamic molecular combing: stretching the whole human genome for high-resolution studies. , 1997, Science.

[66]  K. Nairz,et al.  mre11S--a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. , 1997, Genes & development.

[67]  T. Formosa,et al.  The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein , 1997, Molecular and cellular biology.

[68]  J. Petrini,et al.  Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair , 1996, Molecular and cellular biology.

[69]  S. Elledge,et al.  DNA polymerase ϵ links the DNA replication machinery to the S phase checkpoint , 1995, Cell.

[70]  Judith L Campbell,et al.  DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae , 1993, Molecular and cellular biology.

[71]  S. Subbiah,et al.  The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine nucleotide-binding domain and two large heptad-repeat regions. , 1989, Genetics.

[72]  Anindya Dutta,et al.  Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. , 2007, Genes & development.

[73]  Caroline M. Li,et al.  Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. , 2003, Molecular and cellular biology.

[74]  J. Petrini,et al.  DNA replication-dependent nuclear dynamics of the Mre11 complex. , 2003, Molecular cancer research : MCR.

[75]  C. Wittenberg,et al.  DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. , 1999, Molecular cell.

[76]  S. Elledge,et al.  DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. , 1995, Cell.