Design and analysis of CRISPR–Cas experiments

A large and ever-expanding set of CRISPR–Cas systems now enables the rapid and flexible manipulation of genomes in both targeted and large-scale experiments. Numerous software tools and analytical methods have been developed for the design and analysis of CRISPR–Cas experiments, including resources to design optimal guide RNAs for various modes of manipulation and to analyze the results of such experiments. A major recent focus has been the development of comprehensive tools for use on data from large-scale CRISPR-based genetic screens. As this field continues to progress, a clear ongoing challenge is not only to innovate, but to actively maintain and improve existing tools so that researchers across disciplines can rely on a stable set of excellent computational resources for CRISPR–Cas experiments. Hanna and Doench review the computational methods and tools that have become indispensable for planning and analyzing CRISPR experiments.

[1]  A. McKenna,et al.  FlashFry: a fast and flexible tool for large-scale CRISPR target design , 2017, BMC Biology.

[2]  Kai Blin,et al.  CRISPy-web: An online resource to design sgRNAs for CRISPR applications , 2016, Synthetic and systems biotechnology.

[3]  Jin-Soo Kim,et al.  Web-based design and analysis tools for CRISPR base editing , 2018, BMC Bioinformatics.

[4]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[5]  H. Zoghbi,et al.  Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives , 2019, BCB.

[6]  Aaron N. Chang,et al.  Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions , 2017, Nature Methods.

[7]  Wei Chen,et al.  Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair , 2018 .

[8]  Max A. Horlbeck,et al.  Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation , 2016, eLife.

[9]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[10]  Hans-Werner Mewes,et al.  CORUM: the comprehensive resource of mammalian protein complexes , 2007, Nucleic Acids Res..

[11]  Sungroh Yoon,et al.  Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity , 2018, Nature Biotechnology.

[12]  Ben Berkhout,et al.  Delineation of the Exact Transcription Termination Signal for Type 3 Polymerase III , 2017, Molecular therapy. Nucleic acids.

[13]  John G Doench,et al.  Am I ready for CRISPR? A user's guide to genetic screens , 2017, Nature Reviews Genetics.

[14]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[15]  Steven L Salzberg,et al.  Next-generation genome annotation: we still struggle to get it right , 2019, Genome Biology.

[16]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[17]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[18]  Jihoon Kim,et al.  PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens , 2017, Scientific Reports.

[19]  W. Sellers,et al.  GEMINI: a variational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens , 2019, Genome Biology.

[20]  Joshua M. Korn,et al.  CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions. , 2016, Cancer discovery.

[21]  Ping Wang,et al.  Model-based understanding of single-cell CRISPR screening , 2019, Nature Communications.

[22]  Oliver Pelz,et al.  CRISPRAnalyzeR: Interactive analysis, annotation and documentation of pooled CRISPR screens , 2017, bioRxiv.

[23]  Jan Winter,et al.  CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries , 2016, Genome Biology.

[24]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[25]  Matthew Meyerson,et al.  Targeted genomic rearrangements using CRISPR/Cas technology , 2014, Nature Communications.

[26]  Eiru Kim,et al.  A network of human functional gene interactions from knockout fitness screens in cancer cells , 2019, Life Science Alliance.

[27]  Jaewoong Hwang,et al.  Rescue of high-specificity Cas9 variants using sgRNAs with matched 5’ nucleotides , 2017, Genome Biology.

[28]  Bang Wong,et al.  GeNets: a unified web platform for network-based genomic analyses , 2018, Nature Methods.

[29]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[30]  Jun S. Song,et al.  HiTSelect: a comprehensive tool for high-complexity-pooled screen analysis , 2014, Nucleic acids research.

[31]  John N. Weinstein,et al.  Mistaken Identifiers: Gene name errors can be introduced inadvertently when using Excel in bioinformatics , 2004, BMC Bioinformatics.

[32]  Clifford A. Meyer,et al.  Sequence determinants of improved CRISPR sgRNA design , 2015, Genome research.

[33]  Namritha Ravinder,et al.  Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. , 2017, Journal of biotechnology.

[34]  E. Lander,et al.  Identification and characterization of essential genes in the human genome , 2015, Science.

[35]  Lincoln D. Stein,et al.  Impact of outdated gene annotations on pathway enrichment analysis , 2016, Nature Methods.

[36]  Jennifer Listgarten,et al.  Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs , 2018, Nature Biomedical Engineering.

[37]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[38]  Kendall R. Sanson,et al.  Orthologous CRISPR-Cas9 enzymes for Combinatorial Genetic Screens , 2017, Nature Biotechnology.

[39]  D. Durocher,et al.  Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens , 2017, G3: Genes, Genomes, Genetics.

[40]  J. Pritchard,et al.  High‐resolution mapping of cancer cell networks using co‐functional interactions , 2018, bioRxiv.

[41]  David R. Liu,et al.  Search-and-replace genome editing without double-strand breaks or donor DNA , 2019, Nature.

[42]  Kendall R. Sanson,et al.  Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities , 2018, Nature Communications.

[43]  Raphaël Guérois,et al.  PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets , 2016, Bioinform..

[44]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[45]  J. Kent,et al.  Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR , 2016, Genome Biology.

[46]  Kunling Chen,et al.  Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases , 2017, Genome Biology.

[47]  Xiaolong Cheng,et al.  scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens , 2020, Genome Biology.

[48]  Andrew R. Bassett,et al.  Predicting the mutations generated by repair of Cas9-induced double-strand breaks , 2018, Nature Biotechnology.

[49]  Jonathan M. Mudge,et al.  The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. , 2009, Genome research.

[50]  Jin-Wu Nam,et al.  In vivo high-throughput profiling of CRISPR–Cpf1 activity , 2016, Nature Methods.

[51]  Qian Zhu,et al.  Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms , 2015, Bioinform..

[52]  John G Doench,et al.  CRISPR/Cas9 Screens Reveal Requirements for Host Cell Sulfation and Fucosylation in Bacterial Type III Secretion System-Mediated Cytotoxicity. , 2016, Cell host & microbe.

[53]  Jun S. Liu,et al.  MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens , 2014, Genome Biology.

[54]  Xiaowei Wang,et al.  WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system , 2015, Genome Biology.

[55]  N. Hacohen,et al.  Highly parallel identification of essential genes in cancer cells , 2008, Proceedings of the National Academy of Sciences.

[56]  G. Traver Hart,et al.  BAGEL: a computational framework for identifying essential genes from pooled library screens , 2015, BMC Bioinformatics.

[57]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[58]  Susan Tweedie,et al.  Genenames.org: the HGNC and VGNC resources in 2017 , 2016, Nucleic Acids Res..

[59]  George Church,et al.  Optimization of scarless human stem cell genome editing , 2013, Nucleic acids research.

[60]  Kamola Saydaminova,et al.  Quantification of designer nuclease induced mutation rates: a direct comparison of different methods , 2016, Molecular therapy. Methods & clinical development.

[61]  Daniel Capurso,et al.  DNA Repair Profiling Reve als Nonrandom Outcomes at Cas 9-Mediated Breaks Graphical Abstract Highlights , 2016 .

[62]  Anob M. Chakrabarti,et al.  Target-Specific Precision of CRISPR-Mediated Genome Editing , 2018, bioRxiv.

[63]  Kornel Labun,et al.  CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing , 2019, Nucleic Acids Res..

[64]  David K. Gifford,et al.  Predictable and precise template-free CRISPR editing of pathogenic variants , 2018, Nature.

[65]  M. Garnett,et al.  JACKS: joint analysis of CRISPR/Cas9 knockout screens , 2018, bioRxiv.

[66]  Peng Jiang,et al.  Improved design and analysis of CRISPR knockout screens , 2018, Bioinform..

[67]  B. Menten,et al.  BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment , 2016, Scientific Reports.

[68]  Eleazar Eskin,et al.  Challenges and recommendations to improve the installability and archival stability of omics computational tools , 2019, PLoS biology.

[69]  Jin-Soo Kim,et al.  Cas-analyzer: an online tool for assessing genome editing results using NGS data , 2016, Bioinform..

[70]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[71]  Peter Ebert,et al.  Ten Simple Rules for Developing Usable Software in Computational Biology , 2017, PLoS Comput. Biol..

[72]  Aviad Tsherniak,et al.  Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. , 2018, Cell systems.

[73]  Martin J. Aryee,et al.  Engineered CRISPR-Cas9 nucleases with altered PAM specificities , 2015, Nature.

[74]  E. Welker,et al.  Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage , 2017, Genome Biology.

[75]  John R. Garbe,et al.  EditR: A Method to Quantify Base Editing from Sanger Sequencing , 2018, The CRISPR journal.

[76]  M. Boutros,et al.  E-CRISP: fast CRISPR target site identification , 2014, Nature Methods.

[77]  Sangsu Bae,et al.  Microhomology-based choice of Cas9 nuclease target sites , 2014, Nature Methods.

[78]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[79]  David R. Liu,et al.  Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016, Nature.

[80]  Emanuel J. V. Gonçalves,et al.  Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens , 2019, Nature.

[81]  Matthew C. Canver,et al.  CRISPResso2 provides accurate and rapid genome editing sequence analysis , 2019, Nature Biotechnology.

[82]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[83]  Eleazar Eskin,et al.  Improving the usability and archival stability of bioinformatics software , 2019, Genome Biology.

[84]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[85]  Jin-Soo Kim,et al.  Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites , 2015, Bioinform..

[86]  Myles Brown,et al.  Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute , 2019, Nature Protocols.

[87]  Junhao Fu,et al.  A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells , 2017, Nucleic acids research.

[88]  J. Aster,et al.  Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia. , 2017, Cell stem cell.

[89]  B. van Steensel,et al.  Easy quantitative assessment of genome editing by sequence trace decomposition , 2014, Nucleic acids research.

[90]  James M. McFarland,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, bioRxiv.

[91]  Julia V. Ponomarenko,et al.  Scalable Design of Paired CRISPR Guide RNAs for Genomic Deletion , 2016, bioRxiv.

[92]  Alfonso Valencia,et al.  APPRIS: annotation of principal and alternative splice isoforms , 2012, Nucleic Acids Res..

[93]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[94]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[95]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[96]  Jon P. Connelly,et al.  CRIS.py: A Versatile and High-throughput Analysis Program for CRISPR-based Genome Editing , 2019, Scientific Reports.

[97]  Feng Zhang,et al.  Engineered Cpf1 variants with altered PAM specificities increase genome targeting range , 2017, Nature Biotechnology.

[98]  James C. Hu,et al.  The Gene Ontology Resource: 20 years and still GOing strong , 2019 .

[99]  Nicole M. Gaudelli,et al.  Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage , 2017, Nature.

[100]  Jiyang Yu,et al.  ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling , 2015, Bioinform..

[101]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[102]  Neville E Sanjana,et al.  GUIDES: sgRNA design for loss-of-function screens , 2017, Nature Methods.

[103]  Damian Szklarczyk,et al.  The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible , 2016, Nucleic Acids Res..

[104]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[105]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[106]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, bioRxiv.

[107]  T. Golub,et al.  Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. , 2016, Cancer discovery.

[108]  J. L. Mateo,et al.  CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool , 2015, PloS one.

[109]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[110]  Kristian Helin,et al.  Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression , 2016, Nucleic acids research.

[111]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[112]  Jun S. Liu,et al.  Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR , 2015, Genome Biology.

[113]  Nozomu Yachie,et al.  Engineered CRISPR-Cas9 nuclease with expanded targeting space , 2018, Science.