On the formulation of closest‐point projection algorithms in elastoplasticity—part II: Globally convergent schemes

Report UCB/SEMM 2000-02 - Dept. of Civil Engineering - University of California at Berkeley, USA

[1]  N. Bićanić,et al.  Computational aspects of a softening plasticity model for plain concrete , 1996 .

[2]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[3]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[4]  David R. Owen,et al.  Universal anisotropic yield criterion based on superquadric functional representation: Part 1. Algorithmic issues and accuracy analysis , 1993 .

[5]  E. A. de Souza Neto,et al.  A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space , 1999 .

[6]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[7]  J. Moreau Application of convex analysis to the treatment of elastoplastic systems , 1976 .

[8]  A. Huerta,et al.  Numerical differentiation for local and global tangent operators in computational plasticity , 2000 .

[9]  Christian Miehe,et al.  A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric☆ , 1998 .

[10]  E. A. de Souza Neto,et al.  A model for elastoplastic damage at finite strains: algorithmic issues and applications , 1994 .

[11]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[12]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[13]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[14]  Richard H. Byrd,et al.  A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. , 1985 .

[15]  Agustí Pérez-Foguet,et al.  On the formulation of closest‐point projection algorithms in elastoplasticity—part I: The variational structure , 2002 .

[16]  P-M. Suquet Existence and Regularity of Solutions for Plasticity Problems , 1980 .

[17]  J. Moreau Evolution problem associated with a moving convex set in a Hilbert space , 1977 .

[18]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[19]  Robert L. Taylor,et al.  On the application of multi-step integration methods to infinitesimal elastoplasticity , 1994 .

[20]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[21]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[22]  Antonio Huerta,et al.  Consistent tangent matrices for substepping schemes , 2001 .

[23]  P. Perzyna Thermodynamic Theory of Viscoplasticity , 1971 .

[24]  David R. Owen,et al.  Finite Elements in Plasticity , 1980 .

[25]  Scott W. Sloan,et al.  Substepping schemes for the numerical integration of elastoplastic stress–strain relations , 1987 .

[26]  Scott W. Sloan,et al.  AN AUTOMATIC LOAD STEPPING ALGORITHM WITH ERROR CONTROL , 1996 .

[27]  S. Sloan,et al.  A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion , 1995 .

[28]  Roger Temam,et al.  Mathematical Problems in Plasticity , 1985 .

[29]  Claes Johnson,et al.  On plasticity with hardening , 1978 .