Evolutionarily Stable Strategies of Random Games, and the Vertices of Random Polygons
暂无分享,去创建一个
[1] Santosh S. Vempala,et al. Nash equilibria in random games , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[2] M. Bagnoli,et al. Log-concave probability and its applications , 2004 .
[3] Mark A. McComb. A Practical Guide to Heavy Tails , 2000, Technometrics.
[4] C. Klüppelberg,et al. Subexponential distributions , 1998 .
[5] L. Devroye. On the oscillation of the expected number of extreme points of a random set , 1991 .
[6] J. Haigh. Random polymorphisms and random evolutionarily stable strategies: a comparison , 1990, Journal of Applied Probability.
[7] Luc. On the oscillation of the expected number of extreme points of a random set , 1990 .
[8] L. Gordon,et al. Two moments su ce for Poisson approx-imations: the Chen-Stein method , 1989 .
[9] J. Haigh. The distribution of evolutionarily stable strategies , 1988, Journal of Applied Probability.
[10] E. Damme. Stability and perfection of Nash equilibria , 1987 .
[11] E. Vandamme. Stability and perfection of nash equilibria , 1987 .
[12] Luc Devroye. A Note on Finding Convex Hulls Via Maximal Vectors , 1980, Inf. Process. Lett..
[13] Jozef L. Teugels,et al. The class of subexponential distributions , 1975 .
[14] J. M. Smith,et al. The Logic of Animal Conflict , 1973, Nature.
[15] H. Carnal. Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .
[16] Limiting Sets and Convex Hulls of Samples from Product Measures , 1969 .
[17] V. Chistyakov. A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes , 1964 .
[18] A. Rényi,et al. über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .