Approximating Treewidth and Pathwidth of some Classes of Perfect Graphs

In this paper we discuss algorithms that approximate the treewidth and pathwidth of cotriangulated graphs, permutation graphs and of cocomparability graphs. For a cotriangulated graph, of which the treewidth is at most k we show there exists an O(n2) algorithm finding a path-decomposition with width at most 3k+4. If G[π] is a permutation graph with treewidth k, then we show that the pathwidth of G[π] is at most 2k, and we give an algorithm which constructs a path-decomposition with width at most 2k in time O(nk). We assume that the permutation π is given. In this paper we also discuss the problem of finding an approximation for the treewidth and pathwidth of cocomparability graphs. We show that, if the treewidth of a cocomparability graph is at most k, then the pathwidth is at most O(k2), and we give a simple algorithm finding a path-decomposition with this width. The running time of the algorithm is dominated by a coloring algorithm of the graph. Such a coloring can be found in time O(n3).

[1]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[2]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[3]  G. Dirac On rigid circuit graphs , 1961 .

[4]  Martin Farber,et al.  Domination in Permutation Graphs , 1985, J. Algorithms.

[5]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[6]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[7]  F. Roberts Graph Theory and Its Applications to Problems of Society , 1987 .

[8]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  Jan van Leeuwen,et al.  Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[10]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[11]  Dieter Kratsch,et al.  On Domination Problems for Permutation and Other Graphs , 1987, Theor. Comput. Sci..

[12]  S. Arnborg,et al.  Finding Minimal Forbidden Minors Using a Finite Congruence , 1991, ICALP.

[13]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.

[14]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[15]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[16]  Jeremy P. Spinrad,et al.  On Comparability and Permutation Graphs , 1985, SIAM J. Comput..

[17]  A. Lempel,et al.  Transitive Orientation of Graphs and Identification of Permutation Graphs , 1971, Canadian Journal of Mathematics.

[18]  Robin Thomas,et al.  Algorithms Finding Tree-Decompositions of Graphs , 1991, J. Algorithms.

[19]  S. Arnborg,et al.  Characterization and recognition of partial 3-trees , 1986 .

[20]  Ton Kloks,et al.  Better Algorithms for the Pathwidth and Treewidth of Graphs , 1991, ICALP.

[21]  Frank Harary,et al.  Graph Theory , 2016 .

[22]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[23]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[24]  V. Chvátal,et al.  Topics on perfect graphs , 1984 .

[25]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1993, SIAM J. Discret. Math..

[26]  C. Pandu Rangan,et al.  Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..

[27]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[28]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[29]  C. Pandu Rangan,et al.  Treewidth of Circular-Arc Graphs (Abstract) , 1991, WADS.

[30]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[31]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[32]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[33]  P. Seymour,et al.  Surveys in combinatorics 1985: Graph minors – a survey , 1985 .

[34]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[35]  Dieter Kratsch,et al.  On the restriction of some NP-complete graph problems to permutation graphs , 1985, FCT.

[36]  Jorge Urrutia,et al.  Comparability graphs and intersection graphs , 1983, Discret. Math..