Optimal Protection of Quantum Coherence in Noisy Environment

In this paper, we analyse the quantum coherence dynamics of a single qubit locally interacting with a zero-temperature reservoir. We compare the behaviors of quantum coherence in Markovian and non-Markovian regime. We find that the system coherence is transferred to the reservoir and decreases with time. In non-Markovian regime, quantum coherence exists instantaneous disappearance at some discrete time points. Furthermore, we propose an optimal scheme to protect quantum coherence by executing prior weak measurement and post-measurement reversal. It is worth noticing that the scheme can get better quantum coherence with the larger weak measurement strength, while at the cost of reducing success probability.

[1]  Davide Girolami,et al.  Observable measure of quantum coherence in finite dimensional systems. , 2014, Physical review letters.

[2]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[3]  Radim Filip,et al.  Experimental entanglement distillation of mesoscopic quantum states , 2008, 0812.0709.

[4]  Inducing multipartite entanglement revival in dissipative environment by means of prior quantum uncollapsing measurements , 2015 .

[5]  G. Gour,et al.  Low-temperature thermodynamics with quantum coherence , 2014, Nature Communications.

[6]  J. Sperling,et al.  Resources for Quantum Technology: Nonclassicality versus Entanglement , 2014 .

[7]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[8]  Yong-Su Kim,et al.  Reversing the weak quantum measurement for a photonic qubit , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[9]  Maciej Lewenstein,et al.  Trace distance measure of coherence , 2015, ArXiv.

[10]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[11]  Titas Chanda,et al.  Delineating incoherent non-Markovian dynamics using quantum coherence , 2015, 1505.05810.

[12]  Animesh Datta,et al.  Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of n , 2009, 0901.4454.

[13]  Diego Paiva Pires,et al.  Geometric lower bound for a quantum coherence measure , 2015, 1501.05271.

[14]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[15]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[16]  J. Åberg Catalytic coherence. , 2013, Physical Review Letters.

[17]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[18]  A. Jordan,et al.  Undoing a weak quantum measurement of a solid-state qubit. , 2006, Physical review letters.

[19]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[20]  W. Vogel,et al.  Witnessing the degree of nonclassicality of light , 2014, 1406.7094.

[21]  Javier Prior,et al.  The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes , 2013, Nature Physics.

[22]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[23]  Florian Mintert,et al.  A quantitative theory of coherent delocalization , 2013, 1310.6962.

[24]  N. Gisin,et al.  Experimental entanglement distillation and ‘hidden’ non-locality , 2001, Nature.

[25]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[26]  Gerardo Adesso,et al.  Frozen quantum coherence. , 2014, Physical review letters.

[27]  Franco Nori,et al.  Witnessing Quantum Coherence: from solid-state to biological systems , 2012, Scientific Reports.

[28]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[29]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[30]  J. G. Filgueiras,et al.  Using the quantum Zeno effect for suppression of decoherence , 2014, 1406.7188.

[31]  Sabrina Maniscalco,et al.  Protecting entanglement via the quantum Zeno effect. , 2007, Physical review letters.

[32]  Scully,et al.  Enhancement of the index of refraction via quantum coherence. , 1991, Physical review letters.

[33]  B. Bellomo,et al.  Entanglement dynamics of two independent qubits in environments with and without memory , 2007, 0711.4799.

[34]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[35]  Heng Fan,et al.  Enhancing entanglement trapping by weak measurement and quantum measurement reversal , 2013, 1309.6759.

[36]  Martin B Plenio,et al.  Chemical compass model for avian magnetoreception as a quantum coherent device. , 2013, Physical review letters.

[37]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[38]  Gregory D. Scholes,et al.  Delocalization and Entanglement: A Method of Developing Analytical Multipartite Measures for Mixed W-like States , 2014 .

[39]  Bo Wang,et al.  Non-Markovian effect on the quantum discord , 2009, 0911.1845.

[40]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[41]  L. Ye,et al.  Enhancing quantum Fisher information by utilizing uncollapsing measurements , 2016 .

[42]  Alexandra Olaya-Castro,et al.  Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature , 2013, Nature Communications.

[43]  Chuan Wang,et al.  Protected quantum-state transfer in decoherence-free subspaces , 2015, 1503.08617.

[44]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[45]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[46]  Liu Ye,et al.  Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal , 2015, Quantum Inf. Process..

[47]  L. Ye,et al.  Protecting entanglement under depolarizing noise environment by using weak measurements , 2015 .

[48]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[49]  E. Lucero,et al.  Reversal of the weak measurement of a quantum state in a superconducting phase qubit. , 2008, Physical review letters.

[50]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[51]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[52]  Vahid Karimipour,et al.  Cohering and decohering power of quantum channels , 2015, 1506.02304.

[53]  Yong-Su Kim,et al.  Protecting entanglement from decoherence using weak measurement and quantum measurement reversal , 2012 .

[54]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .