Quantum Algorithm for Spectral Measurement with a Lower Gate Count.

We present two techniques that can greatly reduce the number of gates required to realize an energy measurement, with application to ground state preparation in quantum simulations. The first technique realizes that to prepare the ground state of some Hamiltonian, it is not necessary to implement the time-evolution operator: any unitary operator which is a function of the Hamiltonian will do. We propose one such unitary operator which can be implemented exactly, circumventing any Taylor or Trotter approximation errors. The second technique is tailored to lattice models, and is targeted at reducing the use of generic single-qubit rotations, which are very expensive to produce by standard fault tolerant techniques. In particular, the number of generic single-qubit rotations used by our method scales with the number of parameters in the Hamiltonian, which contrasts with a growth proportional to the lattice size required by other techniques.

[1]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[2]  Jeongwan Haah,et al.  Distillation with Sublogarithmic Overhead. , 2017, Physical review letters.

[3]  I. Chuang,et al.  Hamiltonian Simulation by Uniform Spectral Amplification , 2017, 1707.05391.

[4]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.

[5]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[6]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[7]  Matthew B. Hastings,et al.  Hybrid quantum-classical approach to correlated materials , 2015, 1510.03859.

[8]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[9]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[10]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[11]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[12]  Martin Rötteler,et al.  Efficient synthesis of probabilistic quantum circuits with fallback , 2014, ArXiv.

[13]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[14]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[15]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[16]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[17]  M. Yung,et al.  A quantum–quantum Metropolis algorithm , 2010, Proceedings of the National Academy of Sciences.

[18]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[19]  Aram W. Harrow,et al.  Quantum algorithm for solving linear systems of equations , 2010 .

[20]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[21]  D. Poulin,et al.  Preparing ground States of quantum many-body systems on a quantum computer. , 2008, Physical review letters.

[22]  E. Knill,et al.  Quantum simulations of classical annealing processes. , 2008, Physical review letters.

[23]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[24]  R. Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2006, Physical review letters.

[25]  M. Nielsen,et al.  The Solovay-Kitaev algorithm , 2005, Quantum Inf. Comput..

[26]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[27]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[28]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[29]  Chris Marriott,et al.  Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[30]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[31]  D. Aharonov,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[32]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[33]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[34]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[35]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[36]  A. Steane Efficient fault-tolerant quantum computing , 1998, Nature.

[37]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[38]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[40]  M. Ben-Or,et al.  Fault-tolerant quantum computation with constant error , 1996, STOC '97.

[41]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[42]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[43]  R. Feynman Simulating physics with computers , 1999 .