GridFormation: Towards Self-Driven Online Data Partitioning using Reinforcement Learning
暂无分享,去创建一个
Gunter Saake | Gabriel Campero Durand | David Broneske | Marcus Pinnecke | Mahmoud Mohsen | Maya S. Sekeran | Rufat Piriyev | Fabián Rodriguez | Laxmi Balami | G. Saake | David Broneske | Marcus Pinnecke | Rufat Piriyev | Mahmoud Mohsen | Fabián Rodriguez | Laxmi Balami
[1] Alexander Zeier,et al. HYRISE - A Main Memory Hybrid Storage Engine , 2010, Proc. VLDB Endow..
[2] Carlo Curino,et al. Schism , 2010, Proc. VLDB Endow..
[3] Anastasia Ailamaki,et al. ReCache: Reactive Caching for Fast Analytics over Heterogeneous Data , 2017, Proc. VLDB Endow..
[4] Alekh Jindal,et al. Relax and Let the Database Do the Partitioning Online , 2011, BIRTE.
[5] Nicolas Bruno,et al. Automated partitioning design in parallel database systems , 2011, SIGMOD '11.
[6] Alekh Jindal,et al. Towards a One Size Fits All Database Architecture , 2011, CIDR.
[7] Jens Dittrich,et al. The Case for Automatic Database Administration using Deep Reinforcement Learning , 2018, ArXiv.
[8] Anastasia Ailamaki,et al. H2O: a hands-free adaptive store , 2014, SIGMOD Conference.
[9] Robert H. Sloan,et al. Reinforcement Learning and Function Approximation , 2005, FLAIRS.
[10] Liwen Sun,et al. Fine-grained partitioning for aggressive data skipping , 2014, SIGMOD Conference.
[11] Anastasia Ailamaki,et al. AutoPart: automating schema design for large scientific databases using data partitioning , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..
[12] Richard S. Sutton,et al. Introduction to Reinforcement Learning , 1998 .
[13] Alekh Jindal,et al. A Comparison of Knives for Bread Slicing , 2013, Proc. VLDB Endow..
[14] Stéphane Bressan,et al. Regularized Cost-Model Oblivious Database Tuning with Reinforcement Learning , 2016, Trans. Large Scale Data Knowl. Centered Syst..
[15] Shrainik Jain,et al. Query2Vec: NLP Meets Databases for Generalized Workload Analytics , 2018, ArXiv.
[16] Anastasia Ailamaki,et al. Automated physical designers: what you see is (not) what you get , 2012, DBTest '12.
[17] Satyanarayana R. Valluri,et al. Query Optimization in Oracle 12c Database In-Memory , 2015, Proc. VLDB Endow..
[18] Gunter Saake,et al. Are Databases Fit for Hybrid Workloads on GPUs? A Storage Engine's Perspective , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).
[19] Lin Ma,et al. Query-based Workload Forecasting for Self-Driving Database Management Systems , 2018, SIGMOD Conference.
[20] Jorge-Arnulfo Quiané-Ruiz,et al. Trojan data layouts: right shoes for a running elephant , 2011, SoCC.
[21] Philipp Rösch,et al. A Storage Advisor for Hybrid-Store Databases , 2012, Proc. VLDB Endow..
[22] Lin Ma,et al. Self-Driving Database Management Systems , 2017, CIDR.
[23] Richard S. Sutton,et al. Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.
[24] Vivek R. Narasayya,et al. Integrating vertical and horizontal partitioning into automated physical database design , 2004, SIGMOD '04.
[25] Paul Garrett. Naive set theory , 2007 .
[26] Jignesh M. Patel,et al. Data Morphing: An Adaptive, Cache-Conscious Storage Technique , 2003, VLDB.
[27] Andrew Pavlo,et al. Bridging the Archipelago between Row-Stores and Column-Stores for Hybrid Workloads , 2016, SIGMOD Conference.
[28] Shamkant B. Navathe,et al. Vertical partitioning algorithms for database design , 1984, TODS.
[29] Carlo Curino,et al. Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems , 2012, SIGMOD Conference.