Conserved prefusion protein assembly in regulated exocytosis.

The regulated release of hormones and neurotransmitters is a fundamental process throughout the animal kingdom. The short time scale for the calcium triggering of vesicle fusion in regulated secretion suggests that the calcium sensor synaptotagmin and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) membrane fusion machinery are well ordered before the calcium signal. To gain insight into the organization of the prefusion protein assembly in regulated exocytosis, we undertook a structural/functional study of the vesicular synaptotagmin1 and the plasma membrane SNARE proteins, which copurify from the brain in the absence of calcium. Based on an evolutionary analysis, mutagenesis screens, and a computational protein docking approach, we now provide the first testable description of the supramolecular prefusion assembly. Perturbing the determined synaptotagmin/SNARE-interacting interface in several models of regulated exocytosis altered the secretion of hormones and neurotransmitters. These mutations also disrupted the constitutive synaptotagmin/SNARE link in full agreement with our model. We conclude that the interaction of synaptotagmin with preassembled plasma membrane SNARE proteins, before the action of calcium, can provide a precisely organized "tethering" scaffold that underlies regulated secretion throughout evolution.

[1]  C. Stevens,et al.  Synaptotagmin mutants Y311N and K326/327A alter the calcium dependence of neurotransmission , 2005, Molecular and Cellular Neuroscience.

[2]  B. Davletov,et al.  Self-assembly of SNARE fusion proteins into star-shaped oligomers. , 2005, The Biochemical journal.

[3]  Alexandre M J J Bonvin,et al.  Data‐driven docking for the study of biomolecular complexes , 2005, The FEBS journal.

[4]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[5]  W. Almers,et al.  Tracking SNARE Complex Formation in Live Endocrine Cells , 2004, Science.

[6]  B. Davletov,et al.  A molecular basis underlying differences in the toxicity of botulinum serotypes A and E , 2004, EMBO reports.

[7]  G. Augustine,et al.  Dual Roles of the C2B Domain of Synaptotagmin I in Synchronizing Ca2+-Dependent Neurotransmitter Release , 2004, The Journal of Neuroscience.

[8]  B. Davletov,et al.  Synaptotagmin Interaction with the Syntaxin/SNAP-25 Dimer Is Mediated by an Evolutionarily Conserved Motif and Is Sensitive to Inositol Hexakisphosphate* , 2004, Journal of Biological Chemistry.

[9]  M. Jackson,et al.  Fusion Pore Dynamics Are Regulated by Synaptotagmin•t-SNARE Interactions , 2004, Neuron.

[10]  J. Bonifacino,et al.  The Mechanisms of Vesicle Budding and Fusion , 2004, Cell.

[11]  Colin Rickman,et al.  High Affinity Interaction of Syntaxin and SNAP-25 on the Plasma Membrane Is Abolished by Botulinum Toxin E* , 2004, Journal of Biological Chemistry.

[12]  H. Bellen,et al.  Synaptotagmin I, a Ca2+ sensor for neurotransmitter release , 2003, Trends in Neurosciences.

[13]  Dae-Hyuk Kweon,et al.  Regulation of neuronal SNARE assembly by the membrane , 2003, Nature Structural Biology.

[14]  Alan Morgan,et al.  Secretory granule exocytosis. , 2003, Physiological reviews.

[15]  B. Davletov,et al.  Mechanism of Calcium-independent Synaptotagmin Binding to Target SNAREs* , 2003, The Journal of Biological Chemistry.

[16]  J. Littleton,et al.  Synaptotagmin I Functions as a Calcium Sensor to Synchronize Neurotransmitter Release , 2002, Neuron.

[17]  B. Davletov,et al.  Action of Complexin on SNARE Complex* , 2002, The Journal of Biological Chemistry.

[18]  P. Washbourne,et al.  Molecular Analysis of SNAP‐25 Function in Exocytosis , 2002, Annals of the New York Academy of Sciences.

[19]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[20]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[21]  S. Munro,et al.  Vesicle tethering complexes in membrane traffic. , 2002, Journal of cell science.

[22]  Hitoshi Takahashi,et al.  Direct, Ca2+-dependent Interaction between Tubulin and Synaptotagmin I , 2002, The Journal of Biological Chemistry.

[23]  J. Blasi,et al.  Munc 18a Binding to Syntaxin 1A and 1B Isoforms Defines Its Localization at the Plasma Membrane and Blocks SNARE Assembly in a Three-Hybrid System Assay , 2002, Molecular and Cellular Neuroscience.

[24]  Xiaodong Zhang,et al.  Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis , 2002, Neuron.

[25]  B. Davletov,et al.  Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion , 2002, Nature.

[26]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[27]  O. Lichtarge,et al.  Evolutionary predictions of binding surfaces and interactions. , 2002, Current opinion in structural biology.

[28]  T. Südhof,et al.  Three-Dimensional Structure of the Complexin/SNARE Complex , 2002, Neuron.

[29]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[30]  Terrence G. Oas,et al.  Preorganized secondary structure as an important determinant of fast protein folding , 2001, Nature Structural Biology.

[31]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[32]  S. D. Carlson,et al.  synaptotagmin Mutants Reveal Essential Functions for the C2B Domain in Ca2+-Triggered Fusion and Recycling of Synaptic Vesicles In Vivo , 2001, The Journal of Neuroscience.

[33]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[34]  G. Schiavo,et al.  Neurotoxins affecting neuroexocytosis. , 2000, Physiological reviews.

[35]  C. Lévêque,et al.  Calcium‐Dependent Dissociation of Synaptotagmin from Synaptic SNARE Complexes , 2000, Journal of neurochemistry.

[36]  R. Murray Molecular recognition. , 1999, Analytical chemistry.

[37]  C. Montecucco,et al.  Botulinum Neurotoxin E‐Insensitive Mutants of SNAP‐25 Fail to Bind VAMP but Support Exocytosis , 1999, Journal of neurochemistry.

[38]  W. Antonin,et al.  Mixed and Non-cognate SNARE Complexes , 1999, The Journal of Biological Chemistry.

[39]  S. Pfeffer Transport-vesicle targeting: tethers before SNAREs , 1999, Nature Cell Biology.

[40]  Sejal M. Patel,et al.  SNARE Complex Formation Is Triggered by Ca2+ and Drives Membrane Fusion , 1999, Cell.

[41]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[42]  J. Buchanan,et al.  Morphologically Docked Synaptic Vesicles Are Reduced insynaptotagmin Mutants of Drosophila , 1998, The Journal of Neuroscience.

[43]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[44]  M. Sternberg,et al.  Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. , 1998, Journal of molecular biology.

[45]  M. Sternberg,et al.  Modelling protein docking using shape complementarity, electrostatics and biochemical information. , 1997, Journal of molecular biology.

[46]  A. Brünger,et al.  A Structural Change Occurs upon Binding of Syntaxin to SNAP-25* , 1997, The Journal of Biological Chemistry.

[47]  M. Wilson,et al.  SNAP-25 and synaptotagmin involvement in the final Ca(2+)-dependent triggering of neurotransmitter exocytosis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[49]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[50]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[51]  G. Augustine,et al.  A post-docking role for synaptobrevin in synaptic vesicle fusion , 1994, Neuron.

[52]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[53]  T. Schwarz,et al.  Synaptic transmission persists in synaptotagmin mutants of Drosophila , 1993, Cell.

[54]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[55]  Ronald Breslow,et al.  Molecular recognition , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J M Thornton,et al.  Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. , 1991, Journal of molecular biology.

[57]  H. Erickson,et al.  Co-operativity in protein-protein association. The structure and stability of the actin filament. , 1989, Journal of molecular biology.

[58]  B. Katz,et al.  The timing of calcium action during neuromuscular transmission , 1967, The Journal of physiology.