Kbot55, purified from Buthus occitanus tunetanus venom, represents the first member of a novel α-KTx subfamily

[1]  E. Grishin,et al.  Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1 , 2015, The Journal of Biological Chemistry.

[2]  Shunyi Zhu,et al.  Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. , 2014, Molecular biology and evolution.

[3]  E. Campbell,et al.  Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel , 2013, eLife.

[4]  Zachary L. Bergeron,et al.  Scorpion Toxins Specific for Potassium (K+) Channels: A Historical Overview of Peptide Bioengineering , 2012, Toxins.

[5]  J. Tytgat,et al.  A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. , 2011, Biochemical pharmacology.

[6]  A. Chaari,et al.  Nosocomial scorpion envenomation: An unusual mode ofscorpion sting , 2010, Clinical toxicology.

[7]  R. Luján Organisation of potassium channels on the neuronal surface , 2010, Journal of Chemical Neuroanatomy.

[8]  C. Chi,et al.  Structure-function relationship of bifunctional scorpion toxin BmBKTx1. , 2008, Acta biochimica et biophysica Sinica.

[9]  J. Chippaux,et al.  Epidemiology of scorpionism: a global appraisal. , 2008, Acta tropica.

[10]  O. Pongs,et al.  Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR , 2006, Nature.

[11]  W. Catterall,et al.  Overview of Molecular Relationships in the Voltage-Gated Ion Channel Superfamily , 2005, Pharmacological Reviews.

[12]  Heike Wulff,et al.  International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels , 2005, Pharmacological Reviews.

[13]  R. C. Rodríguez de la Vega,et al.  Current views on scorpion toxins specific for K+-channels. , 2004, Toxicon : official journal of the International Society on Toxinology.

[14]  M. Ayeb,et al.  Kbot1, a three disulfide bridges toxin from Buthus occitanus tunetanus venom highly active on both SK and Kv channels , 2004, Peptides.

[15]  M. Delepierre,et al.  The 'functional' dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels. , 2004, The Biochemical journal.

[16]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[17]  M. Garcia,et al.  Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: Selectivity between voltage‐gated and Maxi‐K channels , 2003, Proteins.

[18]  H. Karoui,et al.  Purification, characterization and molecular modelling of two toxin-like proteins from the Androctonus australis Hector venom. , 2000, European journal of biochemistry.

[19]  G A Gutman,et al.  A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. , 1999, Trends in pharmacological sciences.

[20]  M. Delepierre,et al.  Scorpion toxins specific for Na+-channels. , 1999, European journal of biochemistry.

[21]  H. Reyford,et al.  ATX II, a sodium channel toxin, sensitizes skeletal muscle to halothane, caffeine, and ryanodine. , 1999, Anesthesiology.

[22]  B. Rudy,et al.  Molecular Diversity of K+ Channels , 1999, Annals of the New York Academy of Sciences.

[23]  B. Chait,et al.  Structural conservation in prokaryotic and eukaryotic potassium channels. , 1998, Science.

[24]  R. MacKinnon,et al.  Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. , 1994, Biochemistry.

[25]  J. Tytgat,et al.  Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs , 1992, Neuron.

[26]  R. MacKinnon,et al.  Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor , 1990, Neuron.