Use of detergents in two-dimensional crystallization of membrane proteins.

Structure determination at high resolution is actually a difficult challenge for membrane proteins and the number of membrane proteins that have been crystallized is still small and far behind that of soluble proteins. Because of their amphiphilic character, membrane proteins need to be isolated, purified and crystallized in detergent solutions. This makes it difficult to grow the well-ordered three-dimensional crystals that are required for high resolution structure analysis by X-ray crystallography. In this difficult context, growing crystals confined to two dimensions (2D crystals) and their structural analysis by electron crystallography has opened a new way to solve the structure of membrane proteins. However, 2D crystallization is one of the major bottlenecks in the structural studies of membrane proteins. Advances in our understanding of the interaction between proteins, lipids and detergents as well as development and improvement of new strategies will facilitate the success rate of 2D crystallization. This review deals with the various available strategies for obtaining 2D crystals from detergent-solubilized intrinsic membrane proteins. It gives an overview of the methods that have been applied and gives details and suggestions of the physical processes leading to the formation of the ordered arrays which may be of help for getting more proteins crystallized in a form suitable for high resolution structural analysis by electron crystallography.

[1]  Two-dimensional crystallization and preliminary structure analysis of light harvesting II (B800-850) complex from the purple bacterium Rhodovulum sulfidophilum. , 1995, Journal of molecular biology.

[2]  A. Engel,et al.  Electron and atomic force microscopy of membrane proteins. , 1997, Current opinion in structural biology.

[3]  J. Popot,et al.  Projection Map of Cytochromeb 6  f Complex at 8 Å Resolution* , 1997, The Journal of Biological Chemistry.

[4]  S. Hovmöller,et al.  Structural studies of cytochrome reductase. Improved membrane crystals of the enzyme complex and crystallization of a subcomplex. , 1983, Journal of molecular biology.

[5]  M. Schmid,et al.  Structural analysis of membrane‐bound retrovirus capsid proteins , 1997, The EMBO journal.

[6]  Daniel Lévy,et al.  A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated Triton X-100 removal. , 1990, Biochimica et biophysica acta.

[7]  M. Yeager,et al.  Projection structure of a gap junction membrane channel at 7 Å resolution , 1997, Nature Structural Biology.

[8]  H. Michel,et al.  Crystallization of membrane proteins. , 1983, Current opinion in structural biology.

[9]  Tomomi Kubota,et al.  Three-dimensional structure of bovine cytochrome bC 1 complex by electron cryomicroscopy and helical image reconstruction , 1996, Nature Structural Biology.

[10]  Arnaud Ducruix,et al.  Crystallization of Nucleic Acids and Proteins: A practical Approach , 1998 .

[11]  Gebhard F. X. Schertler,et al.  Arrangement of rhodopsin transmembrane α-helices , 1997, Nature.

[12]  M. Kozlov,et al.  Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. , 2000, Biochimica et biophysica acta.

[13]  J. Lacapère,et al.  Two-dimensional crystallization of Ca-ATPase by detergent removal. , 1998, Biophysical journal.

[14]  R. W. Visschers,et al.  Two-dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy. , 1996 .

[15]  G. Mosser,et al.  The 9 A projection structure of cytochrome b6f complex determined by electron crystallography. , 1999, Journal of molecular biology.

[16]  R. Henderson,et al.  Preparation of two-dimensional arrays from purified beef heart cytochrome c oxidase. , 1982, Biochemistry.

[17]  R. Kornberg,et al.  Two-dimensional crystals of proteins on lipid layers , 1991 .

[18]  G. Mosser,et al.  Two-dimensional crystallization on lipid layer: A successful approach for membrane proteins. , 1999, Journal of structural biology.

[19]  B. Martinac,et al.  A Hexameric Transmembrane Pore Revealed by Two-dimensional Crystallization of the Large Mechanosensitive Ion Channel (MscL) ofEscherichia coli* , 1998, The Journal of Biological Chemistry.

[20]  R. Tampé,et al.  Molecular organization of histidine-tagged biomolecules at self-assembled lipid interfaces using a novel class of chelator lipids. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. Walz,et al.  Human erythrocyte band 3. Solubilization and reconstitution into two-dimensional crystals. , 1993, Journal of molecular biology.

[22]  G. Mosser,et al.  Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. , 1997, Journal of structural biology.

[23]  B. Gowen,et al.  Projection structure of an invertebrate rhodopsin. , 1996, Journal of structural biology.

[24]  T. Walz,et al.  Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A. , 1998, Journal of molecular biology.

[25]  S. Hovmöller,et al.  Membrane crystals of a subunit complex of mitochondrial cytochrome reductase containing the cytochromes b and c 1 , 1981, FEBS letters.

[26]  U Aebi,et al.  2D crystallization: from art to science. , 1992, Ultramicroscopy.

[27]  E. Padan,et al.  Projection structure of NhaA, a secondary transporter from Escherichia coli, at 4.0 Å resolution , 1999, The EMBO journal.

[28]  R. Koning,et al.  A 7.4-A projection structure of outer membrane phospholipase A from Escherichia coli by electron crystallography. , 1998, Journal of structural biology.

[29]  Y. Talmon,et al.  Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition. , 1991 .

[30]  G. Vanderkooi,et al.  Biological membrane structure. 3. The lattice structure of membranous cytochrome oxidase. , 1972, Biochimica et biophysica acta.

[31]  G. Schertler,et al.  Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. , 1995, Biophysical journal.

[32]  K. Chandy,et al.  Two-dimensional crystallization and projection structure of KcsA potassium channel. , 1998, Journal of molecular biology.

[33]  J. Lepault,et al.  Three‐dimensional reconstruction of maltoporin from electron microscopy and image processing. , 1988, The EMBO journal.

[34]  W. Chiu,et al.  Electron crystallography of macromolecular periodic arrays on phospholipid monolayers. , 1997, Advances in biophysics.

[35]  C. Toyoshima,et al.  Two-dimensional crystallization and cryo-electron microscopy of photosystem II. , 1996, Journal of molecular biology.

[36]  S. Cole,et al.  Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. , 1985, Biochimica et biophysica acta.

[37]  Andreas Engel,et al.  The three-dimensional structure of aquaporin-1 , 1997, Nature.

[38]  B. Böttcher,et al.  The structure of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. determined by electron microscopy of two-dimensional crystals. , 1992, Biochimica et biophysica acta.

[39]  G. Zampighi,et al.  Two forms of isolated gap junctions. , 1979, Journal of molecular biology.

[40]  M. Saraste,et al.  Projection structure of the cytochrome bo ubiquinol oxidase from Escherichia coli at 6 Å resolution , 1997, The EMBO journal.

[41]  A. Cheng,et al.  Three-dimensional organization of a human water channel , 1997, Nature.

[42]  Y. Talmon,et al.  Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. , 1989, Biophysical journal.

[43]  H. Hauser Short-chain phospholipids as detergents. , 2000, Biochimica et biophysica acta.

[44]  R Henderson,et al.  The three-dimensional structure of halorhodopsin to 5 A by electron crystallography: A new unbending procedure for two-dimensional crystals by using a global reference structure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Werner K¨hlbrandt,et al.  Three-dimensional structure of plant light-harvesting complex determined by electron crystallography , 1991, Nature.

[46]  Y. Fujiyoshi,et al.  Nicotinic acetylcholine receptor at 4.6 A resolution: transverse tunnels in the channel wall. , 1999, Journal of molecular biology.

[47]  B. Jap High-resolution electron diffraction of reconstituted PhoE porin. , 1988, Journal of molecular biology.

[48]  J. Corless,et al.  Two-dimensional rhodopsin crystals from disk membranes of frog retinal rod outer segments. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Rigaud,et al.  An 8-A projected structure of FhuA, A "ligand-gated" channel of the Escherichia coli outer membrane. , 1999, Journal of structural biology.

[50]  David L. Stokes,et al.  Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution , 1998, Nature.

[51]  W. Kühlbrandt,et al.  Surface crystallisation of the plasma membrane H+-ATPase on a carbon support film for electron crystallography. , 1999, Journal of molecular biology.

[52]  J. Rigaud,et al.  Phospholipid vesicle solubilization and reconstitution by detergents. Symmetrical analysis of the two processes using octaethylene glycol mono-n-dodecyl ether. , 1990, Biochemistry.

[53]  E. Wehrli,et al.  The structure of the photoreceptor unit of Rhodopseudomonas viridis , 1984, The EMBO journal.

[54]  R. Milligan,et al.  Structure and function of a membrane-bound murine MHC class I molecule. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[55]  T. Arad,et al.  Membrane crystals of ubiquinone:cytochrome c reductase from Neurospora mitochondria , 1979, Nature.

[56]  M. Saraste,et al.  Purification and two-dimensional crystallization of bacterial cytochrome oxidases. , 1995, European journal of biochemistry.

[57]  A. Helenius,et al.  Solubilization of membranes by detergents. , 1975, Biochimica et biophysica acta.

[58]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[59]  W. Kühlbrandt,et al.  Three-dimensional map of the plasma membrane H+-ATPase in the open conformation , 1998, Nature.

[60]  B. Pitard,et al.  Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. , 1995, Biochimica et biophysica acta.

[61]  G. Mosser,et al.  Detergent removal by non-polar polystyrene beads , 1998, European Biophysics Journal.

[62]  G. Robillard,et al.  The 5 angstrom projection structure of the transmembrane domain of the mannitol transporter enzyme II , 1999 .

[63]  J B Heymann,et al.  2D crystallization of membrane proteins: rationales and examples. , 1998, Journal of structural biology.

[64]  T. Walz,et al.  Two-dimensional crystallization of the light-harvesting I-reaction centre photounit from Rhodospirillum rubrum. , 1997, Journal of molecular biology.

[65]  D. Lasič,et al.  The mechanism of vesicle formation. , 1988, The Biochemical journal.

[66]  M. Zulauf,et al.  The micelle to vesicle transition of lipids and detergents in the presence of a membrane protein: towards a rationale for 2D crystallization , 1996, FEBS letters.

[67]  J. Silvius Solubilization and functional reconstitution of biomembrane components. , 1992, Annual review of biophysics and biomolecular structure.

[68]  W. Kühlbrandt,et al.  Two-dimensional structure of plant photosystem II at 8-Å resolution , 1997, Nature.

[69]  D. Stokes,et al.  Two‐Dimensional Crystal Formation from Solubilized Membrane Proteins Using Bio‐Beads to Remove Detergent a , 1997, Annals of the New York Academy of Sciences.

[70]  A. Hoenger,et al.  Assembly of 2-D membrane protein crystals: dynamics, crystal order, and fidelity of structure analysis by electron microscopy. , 1992, Journal of structural biology.

[71]  W. Kühlbrandt,et al.  Two-dimensional crystallization of membrane proteins , 1992, Quarterly Reviews of Biophysics.

[72]  James Barber,et al.  Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution , 1998, Nature.

[73]  Huilin Li,et al.  Molecular design of aquaporin-1 water channel as revealed by electron crystallography , 1997, Nature Structural Biology.

[74]  P. Loll,et al.  Strategies for crystallizing membrane proteins , 1996, Journal of bioenergetics and biomembranes.

[75]  J. Rigaud,et al.  Reconstitution of the sarcoplasmic reticulum Ca(2+)-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. , 1992, Biochimica et biophysica acta.

[76]  Shigeru Endo,et al.  Hexagonal Structure of Two-Dimensional Crystals of the α3β3 Complex of Thermophilic ATP Synthase , 1989 .

[77]  R. Henderson,et al.  Temperature-dependent aggregation of bacteriorhodopsin in dipalmitoyl- and dimyristoylphosphatidylcholine vesicles. , 1978, Journal of molecular biology.

[78]  A. Walter,et al.  The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: effects of sodium chloride, sucrose and urea. , 2000, Biochimica et biophysica acta.

[79]  A. Engel,et al.  Two-dimensional crystallization of Escherichia coli lactose permease. , 1999, Journal of structural biology.

[80]  A. Engel,et al.  Ordered arrays of the photosystem I reaction centre after reconstitution: projections and surface reliefs of the complex at 2 nm resolution. , 1990, The EMBO journal.

[81]  T. Tsuchiya,et al.  Characteristics of n-octyl beta-D-thioglucopyranoside, a new non-ionic detergent useful for membrane biochemistry. , 1984, The Biochemical journal.

[82]  R. Morgenstern,et al.  Parameters for the two-dimensional crystallization of the membrane protein microsomal glutathione transferase. , 1998, Journal of structural biology.

[83]  G. Schertler,et al.  Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. , 1998, Journal of molecular biology.

[84]  W. Kühlbrandt,et al.  2‐D structure of the Neurospora crassa plasma membrane ATPase as determined by electron cryomicroscopy. , 1995, The EMBO journal.

[85]  S. Chan,et al.  Structure and orientation of cytochrome c oxidase in crystalline membranes. Studies by electron microscopy and by labeling with subunit-specific antibodies. , 1978, The Journal of biological chemistry.

[86]  G. Montoya,et al.  Two-dimensional structure of light harvesting complex II (LHII) from the purple bacterium Rhodovulum sulfidophilum and comparison with LHII from Rhodopseudomonas acidophila. , 1996, Structure.

[87]  T. Walz,et al.  Highly ordered two-dimensional crystals of photosystem I reaction center from Synechococcus sp.: functional and structural analyses. , 1996, Journal of molecular biology.

[88]  Y. Fujiyoshi,et al.  A method for 2D crystallization of soluble proteins at liquid-liquid interface. , 1995, Ultramicroscopy.

[89]  T. Walz,et al.  Tubular crystals of a photosystem II core complex. , 1996, Journal of molecular biology.

[90]  James Barber,et al.  Revealing the structure of the oxygen-evolving core dimer of photosystem II by cryoelectron crystallography , 1999, Nature Structural Biology.

[91]  P. Brown,et al.  Two-dimensional crystallization of histidine-tagged, HIV-1 reverse transcriptase promoted by a novel nickel-chelating lipid. , 1994, Journal of structural biology.

[92]  J. Rosenbusch,et al.  Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membranes. , 1983, Journal of molecular biology.

[93]  P. Bullough,et al.  The 8.5 A projection map of the light‐harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. , 1995, The EMBO journal.

[94]  H. Michel,et al.  Cytochrome c oxidase. , 1996, Current opinion in structural biology.

[95]  Walz,et al.  Electron Crystallography of Two-Dimensional Crystals of Membrane Proteins. , 1998, Journal of structural biology.

[96]  D. Stokes,et al.  How to make tubular crystals by reconstitution of detergent-solubilized Ca2(+)-ATPase. , 1997, Biophysical journal.

[97]  J. Vonck,et al.  Electron microscopy and image analysis of two-dimensional crystals and single molecules of alcohol oxidase from Hansenula polymorpha. , 1990, Biochimica et biophysica acta.

[98]  J. Møller,et al.  Interaction of membrane proteins and lipids with solubilizing detergents. , 2000, Biochimica et biophysica acta.

[99]  J. Rigaud,et al.  A new "gel-like" phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution studies. , 1998, Biophysical journal.

[100]  W. Kühlbrandt,et al.  Three‐dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. , 1994, The EMBO journal.

[101]  B. Jap,et al.  Three-dimensional electron diffraction of PhoE porin to 2.8 A resolution. , 1990, Journal of molecular biology.

[102]  C. Mannella Phospholipase-induced crystallization of channels in mitochondrial outer membranes. , 1984, Science.

[103]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.