Discourse-Driven Argument Mining in Scientific Abstracts

Argument mining consists in the automatic identification of argumentative structures in texts. In this work we address the open question of whether discourse-level annotations can contribute to facilitate the identification of argumentative components and relations in scientific literature. We conduct a pilot study by enriching a corpus of computational linguistics abstracts that contains discourse annotations with a new argumentative annotation level. The results obtained from preliminary experiments confirm the potential value of the proposed approach.

[1]  Goran Glavas,et al.  ArguminSci: A Tool for Analyzing Argumentation and Rhetorical Aspects in Scientific Writing , 2018, ArgMining@EMNLP.

[2]  Lutz Bornmann,et al.  Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references , 2014, J. Assoc. Inf. Sci. Technol..

[3]  Simone Teufel,et al.  Corpora for the Conceptualisation and Zoning of Scientific Papers , 2010, LREC.

[4]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[5]  Manfred Stede,et al.  GraPAT: a Tool for Graph Annotations , 2014, LREC.

[6]  Paolo Torroni,et al.  Argumentation Mining , 2016, ACM Trans. Internet Techn..

[7]  Iryna Gurevych,et al.  Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging , 2017, EMNLP.

[8]  Jason Baldridge,et al.  Hierarchical Discriminative Classification for Text-Based Geolocation , 2014, EMNLP.

[9]  An Yang,et al.  SciDTB: Discourse Dependency TreeBank for Scientific Abstracts , 2018, ACL.

[10]  Owen Rambow,et al.  Identifying Justifications in Written Dialogs by Classifying Text as Argumentative , 2011, Int. J. Semantic Comput..

[11]  Iryna Gurevych,et al.  Argumentation Mining in Persuasive Essays and Scientific Articles from the Discourse Structure Perspective , 2014, ArgNLP.

[12]  Manfred Stede,et al.  Parallel Discourse Annotations on a Corpus of Short Texts , 2016, LREC.

[13]  Manfred Stede,et al.  Rhetorical structure and argumentation structure in monologue text , 2016, ArgMining@ACL.

[14]  K. Hyland,et al.  Hedging in scientific research articles , 1998 .

[15]  Simone Teufel,et al.  Argumentative zoning information extraction from scientific text , 1999 .

[16]  Liang Wang,et al.  Text-level Discourse Dependency Parsing , 2014, ACL.

[17]  Suresh Manandhar,et al.  Dependency Based Embeddings for Sentence Classification Tasks , 2016, NAACL.

[18]  Iryna Gurevych,et al.  Linking the Thoughts: Analysis of Argumentation Structures in Scientific Publications , 2015, ArgMining@HLT-NAACL.

[19]  Marie-Francine Moens,et al.  Argumentation Mining: Where are we now, where do we want to be and how do we get there? , 2013, FIRE.

[20]  Serena Villata,et al.  From Discourse Analysis to Argumentation Schemes and Back: Relations and Differences , 2013, CLIMA.

[21]  Simone Teufel,et al.  Towards Domain-Independent Argumentative Zoning: Evidence from Chemistry and Computational Linguistics , 2009, EMNLP.

[22]  Thomas Wolf,et al.  A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks , 2018, AAAI.

[23]  William C. Mann,et al.  Rhetorical structure theory and text analysis , 1989 .

[24]  Dragomir R. Radev,et al.  The ACL anthology network corpus , 2009, Language Resources and Evaluation.

[25]  Dietrich Rebholz-Schuhmann,et al.  Automatic recognition of conceptualization zones in scientific articles and two life science applications , 2012, Bioinform..

[26]  Goran Glavas,et al.  An Argument-Annotated Corpus of Scientific Publications , 2018, ArgMining@EMNLP.

[27]  Nancy Green,et al.  Identifying Argumentation Schemes in Genetics Research Articles , 2015, ArgMining@HLT-NAACL.

[28]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[29]  Nicholas Asher,et al.  How much progress have we made on RST discourse parsing? A replication study of recent results on the RST-DT , 2017, EMNLP.

[30]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[31]  Sebastian Ruder,et al.  An Overview of Multi-Task Learning in Deep Neural Networks , 2017, ArXiv.

[32]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[33]  Simone Teufel Towards Discipline-Independent Argumentative Zoning : Evidence from Chemistry and Computational Linguistics , 2009 .