First Steps in the FTU Migration Towards a Modular and Distributed Real-Time Control Architecture Based on MARTe

The Fusion Advanced Studies Torus (FAST) experiment is being proposed by the Italian laboratories as a European satellite Tokamak that will enhance and facilitate the exploitation of ITER like scenarios and technologies. Its size and complexity is comparable to the largest fusion machine in the world: JET. As such, its real time control system will have to meet basic requirements such as a modular and distributed architecture, where different control subsystems can be easily integrated at different times and can operate either independently or in cooperation with other subsystems. Another important feature, which has to be taken into account, is the transparency regarding both the hardware interfacing and the adopted platform. As a test bed, we are currently planning to upgrade the architecture of the Frascati Tokamak Upgrade (FTU) real-time system in order to improve its flexibility and modularity and have decided to adopt the MARTe package to reach our goal. Currently, there are four systems under development at FTU: the LH-Power system; the gas puffing control system; the ODIN Equilibrium Reconstruction system; and the position and current feedback control system (currently in a design phase). This paper will describe the current status and first results of the previously referred systems integration.