Whole-cell biocomputing.

[1]  R. Blakemore Magnetotactic bacteria , 1975, Science.

[2]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[3]  R S Wolfe,et al.  Magnetite in Freshwater Magnetotactic Bacteria , 1979, Science.

[4]  R. Blakemore,et al.  Ultrastructure of a magnetotactic spirillum , 1980, Journal of bacteriology.

[5]  T. Moench,et al.  Electron-optical characterization of bacterial magnetite , 1981 .

[6]  T. Matsuda,et al.  Morphology and structure of biogenic magnetite particles , 1983, Nature.

[7]  R. Frankel,et al.  Magnetic guidance of organisms. , 1984, Annual review of biophysics and bioengineering.

[8]  J. Nickel,et al.  Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material , 1985, Antimicrobial Agents and Chemotherapy.

[9]  Stephen Mann,et al.  Ultrastructure and characterization of anisotropic magnetic inclusions in magnetotactic bacteria , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[11]  Holger W. Jannasch,et al.  Anaerobic magnetite production by a marine, magnetotactic bacterium , 1988, Nature.

[12]  R. Frankel,et al.  Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium , 1990, Nature.

[13]  Marcos Farina,et al.  Magnetic iron-sulphur crystals from a magnetotactic microorganism , 1990, Nature.

[14]  M. R. Brown,et al.  Sensitivity of biofilms to antimicrobial agents. , 1993, The Journal of applied bacteriology.

[15]  B. Iglewski,et al.  Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa , 1994, Journal of Bacteriology.

[16]  L. Bousse Whole Cell Biosensors , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[17]  Donald G. Buerk,et al.  Biosensors: Theory and Applications , 1995 .

[18]  E. Ruby,et al.  Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. , 1996, Annual review of microbiology.

[19]  Vijay K. Varadan,et al.  Smart Structures and Materials 1998: Smart Electronics and MEMS , 1996 .

[20]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  E. Greenberg,et al.  Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi , 1997, Journal of bacteriology.

[22]  A. Arkin,et al.  Simulation of prokaryotic genetic circuits. , 1998, Annual review of biophysics and biomolecular structure.

[23]  E. Greenberg,et al.  Self perception in bacteria: quorum sensing with acylated homoserine lactones. , 1998, Current opinion in microbiology.

[24]  Michael J. Paulus,et al.  Bioluminescent bioreporter integrated circuits (BBICs) , 1998, Smart Structures.

[25]  Gary S. Sayler,et al.  Induction of the tod Operon by Trichloroethylene in Pseudomonas putida TVA8 , 1998, Applied and Environmental Microbiology.

[26]  Michael J. Paulus,et al.  Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors , 1998 .

[27]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[28]  M. Surette,et al.  Quorum sensing in Escherichia coli and Salmonella typhimurium. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Takafumi Aoki,et al.  Pattern Formation in Reaction-Diffusion Enzyme Transistor Circuits , 1999 .

[30]  Takafumi Aoki,et al.  Enzyme transistor circuits for reaction-diffusion computing , 1999 .

[31]  S. Velizarov Electric and Magnetic Fields in Microbial Biotechnology: Possibilities, Limitations, and Perspectives , 1999 .

[32]  L. Naylor,et al.  Reporter gene technology: the future looks bright. , 1999, Biochemical pharmacology.

[33]  Gary M. Dunny,et al.  Cell-cell signaling in bacteria , 1999 .

[34]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[35]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[36]  G. S. Wilson,et al.  Enzyme-based biosensors for in vivo measurements. , 2000, Chemical reviews.

[37]  Edward G. Ruby,et al.  Vibrio fischeri lux Genes Play an Important Role in Colonization and Development of the Host Light Organ , 2000, Journal of bacteriology.

[38]  G. S. Wilson,et al.  Enzyme-based biosensors for in vivo measurements. , 2000, Chemical reviews.

[39]  S. V. Nyholm,et al.  Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[41]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[42]  W. Lim,et al.  Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. , 2000, Science.

[43]  Ron Weiss,et al.  Engineered Communications for Microbial Robotics , 2000, DNA Computing.

[44]  High throughput and global approaches to gene expression. , 2000, Combinatorial chemistry & high throughput screening.

[45]  J. M. Rochelle,et al.  An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit. , 2001, Sensors and actuators. B, Chemical.

[46]  Ron Weiss,et al.  Toward in vivo Digital Circuits , 2002 .