The Role of GNSS Vertical Velocities to Correct Estimates of Sea Level Rise from Tide Gauge Measurements in Greece

ABSTRACT In this study, we show how the Global Navigation Satellite System (GNSS)-derived vertical velocities contribute to the correction of tide gauge (TG) measurements used for the sea level rise estimation in Greece. Twelve sites with records of local sea level heights are processed in order to estimate their trend. Certain error sources related to TGs, e.g. equipment changes, data noise, may lead to biased or erroneous estimations of the sea level height. Therefore, it would be preferred to follow a robust estimation technique in order to detect and reduce outlier effects. The geocentric sea level rise is estimated by taking into account the land vertical motion of co-located GNSS permanent stations at the Hellenic area. TGs measure the height of the water relative to a monitored geodetic benchmark on land. On the other hand, using GNSS-based methods the vertical land motion can be derived. By means of extended models fitted to the GNSS time-series position, obtained from seven years of continuous data analysis, periodic signals are well described. The synergy of the two co-located techniques results in the correction of TG relative sea level heights taking into account the GNSS vertical velocities and consequently obtaining the conversion to absolute (geocentric) sea level trend.

[1]  L. P. Pellinen Physical Geodesy , 1972 .

[2]  B. Richter,et al.  Sea level in the Mediterranean: a first step towards separating crustal movements and absolute sea-level variations , 1996 .

[3]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[4]  Robert J. Nicholls,et al.  Sea‐level scenarios for evaluating coastal impacts , 2014 .

[5]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[6]  John Badekas,et al.  INVESTIGATION RELATED TO THE ESTABLISHMENT OF A WORLD GEODETIC SYSTEM. , 1969 .

[7]  K. Johnson An Update. , 1984, Journal of food protection.

[8]  K. Emery,et al.  Sea levels, land levels, and tide gauges , 1991 .

[9]  James Foster,et al.  Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin , 2007 .

[10]  M. Bouin,et al.  Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide , 2007 .

[11]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[12]  Anastasia Kiratzi,et al.  A detailed study of the active crustal deformation in the Aegean and surrounding area , 1996 .

[13]  C. Birkett,et al.  The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes , 1995 .

[14]  S. Jevrejeva,et al.  New Data Systems and Products at the Permanent Service for Mean Sea Level , 2013 .

[15]  Riccardo Caputo,et al.  The Greek Database of Seismogenic Sources (GreDaSS): state-of-the-art for northern Greece , 2013 .

[16]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[17]  Giancarlo D'Agostino,et al.  CAHIERS DU CENTRE EUROPÉEN DE GÉODYNAMIQUE ET DE SÉISMOLOGIE , 2006 .

[18]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[19]  G. Mackay Fundamental Ambiguity in the Definition of Vertical Motion , 2004 .

[20]  T. van Dam,et al.  Atmospheric pressure loading corrections applied to GPS data at the observation level , 2005 .

[21]  Xavier Collilieux,et al.  Global sea-level rise and its relation to the terrestrial reference frame , 2009 .

[22]  S. Dangendorf,et al.  A review of trend models applied to sea level data with reference to the “acceleration‐deceleration debate” , 2015 .

[23]  P. Burton,et al.  Greek tectonics and seismicity , 1984 .

[24]  C. Shum,et al.  Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia , 2004 .

[25]  Shuanggen Jin,et al.  Coastal sea level changes in Europe from GPS, tide gauge, satellite altimetry and GRACE, 1993–2011 , 2013 .

[26]  Geoffrey Blewitt,et al.  Effect of annual signals on geodetic velocity , 2002 .

[27]  Maria Eduarda Silva,et al.  Nonlinear sea level trends from European tide gauge records , 2006 .

[28]  T. Baker Absolute sea level measurements, climate change and vertical crustal movements , 1993 .

[29]  R. Nikolaidis Observation of geodetic and seismic deformation with the Global Positioning System , 2002 .

[30]  Bruce C. Douglas,et al.  GLOBAL SEA RISE: A REDETERMINATION , 1997 .

[31]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[32]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[33]  Helmut Moritz,et al.  Geodetic Reference System 1980 , 1980 .

[34]  Mukti Fatimah,et al.  ANALISIS PERUBAHAN TINGGI MUKA AIR LAUT DI KOTA PADANG TAHUN 2008 SAMPAI 2012 DENGAN MENGGUNAKAN DATA PERMANENT SERVICE FOR MEAN SEA LEVEL (PSMSL) , 2013 .

[35]  D. Rossikopoulos,et al.  A New Velocity Field of Greece Based on Seven Years (2008–2014) Continuously Operating GPS Station Data , 2016 .

[36]  Philip L. Woodworth,et al.  R. Player. . The Permanent Service for Mean Sea Level: An update to the 21st century. , 2003 .

[37]  J. Benveniste,et al.  Radar Altimetry: Past, Present and Future , 2011 .

[38]  S. Jevrejeva,et al.  The Permanent Service for Mean Sea Level , 2005 .

[39]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[40]  Gerd Gendt,et al.  The International GPS Service: Celebrating the 10th anniversary and looking to the next decade , 2005 .

[41]  D. U. Sanli,et al.  Geocentric sea level trend using GPS and >100‐year tide gauge record on a postglacial rebound nodal line , 2001 .

[42]  M. Marcos,et al.  Vertical land motion as a key to understanding sea level change and variability , 2016 .