Role of mutual information in entropy production under information exchanges

We relate the information exchange between two stochastic systems to the nonequilibrium entropy production in the whole system. By deriving a general formula that decomposes the total entropy production into the thermodynamic and informational parts, we obtain nonequilibrium equalities such as the fluctuation theorem in the presence of information processing. Our results apply not only to situations under measurement and feedback control but also to those under multiple information exchanges between two systems, giving the fundamental energy cost for information processing and elucidating the thermodynamic and informational roles of a memory in information processing. We point out a dual relationship between measurement and feedback.

[1]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[2]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[3]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[4]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[7]  Udo Seifert,et al.  An autonomous and reversible Maxwell's demon , 2013 .

[8]  A. C. Barato,et al.  Unifying three perspectives on information processing in stochastic thermodynamics. , 2013, Physical review letters.

[9]  H. Touchette,et al.  Information and flux in a feedback controlled Brownian ratchet , 2009 .

[10]  Hal Tasaki Unified Jarzynski and Sagawa-Ueda relations for Maxwell's demon , 2013 .

[11]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Udo Seifert,et al.  Efficiency of a Brownian information machine , 2012, 1203.0184.

[14]  Jordan M. Horowitz,et al.  Thermodynamic reversibility in feedback processes , 2011, 1104.0332.

[15]  Youhei Fujitani,et al.  Jarzynski Equality Modified in the Linear Feedback System , 2010 .

[16]  Brian R. Long,et al.  Realization of a feedback controlled flashing ratchet. , 2008, Physical review letters.

[17]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[19]  Massimiliano Esposito,et al.  Mutual entropy production in bipartite systems , 2013, 1307.4728.

[20]  C. Jarzynski Hamiltonian Derivation of a Detailed Fluctuation Theorem , 1999, cond-mat/9908286.

[21]  Udo Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[22]  T. Sagawa Second Law-Like Inequalities with Quantum Relative Entropy: An Introduction , 2012, 1202.0983.

[23]  E. Lutz,et al.  Memory erasure in small systems. , 2008, Physical review letters.

[24]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[25]  A. Jayannavar,et al.  Fluctuation theorems in the presence of information gain and feedback , 2011, 1109.6508.

[26]  H. Kantz,et al.  Differential Landauer's principle , 2013, 1302.6478.

[27]  J. Bokor,et al.  Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. , 2011, Physical review letters.

[28]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[29]  Maxwell's demon based on a single-electron pump , 2011 .

[30]  M. Feito,et al.  Thermodynamics of feedback controlled systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Christopher Jarzynski,et al.  Maxwell's refrigerator: an exactly solvable model. , 2013, Physical review letters.

[32]  Udo Seifert,et al.  Thermodynamics of genuine nonequilibrium states under feedback control. , 2011, Physical review letters.

[33]  Christopher Jarzynski,et al.  Nonequilibrium work theorem for a system strongly coupled to a thermal environment , 2004 .

[34]  Masahito Ueda,et al.  Erratum: Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure [Phys. Rev. Lett. 102, 250602 (2009)] , 2011 .

[35]  Hal Tasaki,et al.  Quantum Jarzynski-Sagawa-Ueda Relations , 2010, 1012.2753.

[36]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Kurt Jacobs,et al.  Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements , 2009, 0906.4146.

[38]  Sosuke Ito,et al.  Information thermodynamics on causal networks. , 2013, Physical review letters.

[39]  L. Brillouin Maxwell's Demon Cannot Operate: Information and Entropy. I , 1951 .

[40]  S Turgut Relations between entropies produced in nondeterministic thermodynamic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  U. Seifert,et al.  Extracting work from a single heat bath through feedback , 2011, 1102.3826.

[42]  A Quantum Fluctuation Theorem , 2000, cond-mat/0007360.

[43]  T. Munakata,et al.  Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited , 2012, 1202.0974.

[44]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[45]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[46]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[47]  Jordan M. Horowitz,et al.  Designing optimal discrete-feedback thermodynamic engines , 2011, 1110.6808.

[48]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[49]  Hal Tasaki Jarzynski Relations for Quantum Systems and Some Applications , 2000 .

[50]  Genrikh R. Ivanitskii,et al.  Long-term dynamic structural memory in water: can it exist? , 2014 .

[51]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[52]  Hong Qian,et al.  Fluctuation theorems for a molecular refrigerator. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Francisco J Cao,et al.  Feedback control in a collective flashing ratchet. , 2004, Physical review letters.

[54]  Gernot Schaller,et al.  Stochastic thermodynamics for “Maxwell demon” feedbacks , 2012, 1204.5671.

[55]  Sosuke Ito,et al.  Effects of error on fluctuations under feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  L. Brillouin,et al.  Science and information theory , 1956 .

[57]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[58]  Peter Hänggi,et al.  Fluctuation theorem for arbitrary open quantum systems. , 2009, Physical review letters.

[59]  Suriyanarayanan Vaikuntanathan,et al.  Dissipation and lag in irreversible processes , 2009, 0909.3457.

[60]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2010, Nature.

[61]  J. Maxwell,et al.  Theory of Heat , 1892 .

[62]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[63]  T. Rudolph,et al.  Entanglement and the thermodynamic arrow of time. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  H. Büttner,et al.  N ov 2 00 7 Information and entropy in quantum Brownian motion : Thermodynamic entropy versus von Neumann entropy , 2008 .

[65]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[66]  Gernot Schaller,et al.  Thermodynamics of a physical model implementing a Maxwell demon. , 2012, Physical review letters.

[67]  Dissipationless Information Erasure and Landauer's Principle , 2005, cond-mat/0504323.

[68]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[69]  Jordan M Horowitz,et al.  Imitating chemical motors with optimal information motors. , 2012, Physical review letters.

[70]  A E Allahverdyan,et al.  Breakdown of the Landauer bound for information erasure in the quantum regime. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Massimiliano Esposito,et al.  Entropy production as correlation between system and reservoir , 2009, 0908.1125.

[72]  Takahiro Sagawa,et al.  Quantum Szilard engine. , 2010, Physical review letters.

[73]  John D. Norton,et al.  Eaters of the Lotus: Landauer's Principle and the Return of Maxwell's Demon , 2005 .

[74]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[75]  Modeling Maxwell's demon with a microcanonical Szilard engine. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[77]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[78]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[79]  T. Sagawa Hamiltonian Derivations of the Generalized Jarzynski Equalities under Feedback Control , 2011, 1105.5888.

[80]  Francisco J. Cao,et al.  Open Problems on Information and Feedback Controlled Systems , 2012, Entropy.