On the Number of Ordinary Conics
暂无分享,去创建一个
[1] Lucja Farnik,et al. On the Sylvester-Gallai theorem for conics , 2014, 1411.2648.
[2] Ben Green,et al. On Sets Defining Few Ordinary Lines , 2012, Discret. Comput. Geom..
[3] Frank de Zeeuw,et al. On the number of ordinary circles , 2014, 1412.8314.
[4] János Pach,et al. Research problems in discrete geometry , 2005 .
[5] József Beck,et al. On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry , 1983, Comb..
[6] T. Motzkin. The lines and planes connecting the points of a finite set , 1951 .
[7] Z. Füredi,et al. Arrangements of lines with a large number of triangles , 1984 .
[8] Joe W. Harris,et al. Algebraic Geometry: A First Course , 1995 .
[9] P. D. T. A. Elliott,et al. NUMBER OF CIRCLES DETERMINED BY n POINTS , 1967 .
[10] P. D. T. A. Elliott,et al. On the number of circles determined byn points , 1967 .
[11] József Dénes,et al. Research problems , 1980, Eur. J. Comb..
[12] Asish Mukhopadhyay,et al. Finding an Ordinary Conic and an Ordinary Hyperplane , 1999, Nord. J. Comput..
[13] Paul R. Wilson,et al. A sylvester theorem for conic sections , 1988, Discret. Comput. Geom..
[14] C. Hoffmann. Algebraic curves , 1988 .
[15] N. Sloane,et al. The orchard problem , 1974 .