Continuous finite element schemes for a phase field model in two-layer fluid Bénard-Marangoni convection computations

Abstract In this article, we study a phase field model for a two-layer fluid where the temperature dependence of both the density (buoyancy forces) and the surface tension (Marangoni effects) is considered. The phase field model consisting of a modified Navier–Stokes equation, a Cahn–Hilliard phase field equation and an energy transport equation is derived through an energetic variational procedure. An appropriate variational form and a continuous finite element method are adopted to maintain the underlying energy law to its greatest extent. A few examples for Benard–Marangoni convection in an Acetonitrile and n-Hexane two-layer fluid system heated from above will be computed to justify our phase field model and further show the good performance of our methods. In addition, an interesting experiment will be performed to show the competition between the Marangoni effects and the buoyancy forces.

[1]  Edward A. Spiegel,et al.  Rayleigh‐Bénard Convection: Structures and Dynamics , 1998 .

[2]  Chunfeng Zhou,et al.  Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing , 2006, J. Comput. Phys..

[3]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[4]  M. Mendes,et al.  Marangoni instability in binary liquid–liquid systems , 2004 .

[5]  Y. Renardy,et al.  Instabilities in two layer Rayleigh–Bénard convection: overview and outlook , 1998 .

[6]  Ping Lin,et al.  Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method , 2008, J. Comput. Phys..

[7]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[8]  Michael J. Ward,et al.  Metastable Bubble Solutions for the Allen-Cahn Equation with Mass Conservation , 1996, SIAM J. Appl. Math..

[9]  George Beckett,et al.  An r-adaptive finite element method for the solution of the two-dimensional phase-field equations , 2006 .

[10]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[11]  Chunfeng Zhou,et al.  Spontaneous shrinkage of drops and mass conservation in phase-field simulations , 2007, J. Comput. Phys..

[12]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[14]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[15]  Chun Liu,et al.  Simulations of singularity dynamics in liquid crystal flows: A C0 finite element approach , 2006, J. Comput. Phys..

[16]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[17]  Min Gao,et al.  A gradient stable scheme for a phase field model for the moving contact line problem , 2012, J. Comput. Phys..

[18]  Hui Zhang,et al.  An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics , 2007, J. Comput. Phys..

[19]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[20]  G. Mase,et al.  Continuum Mechanics for Engineers, Second Edition , 1999 .

[21]  Jian Zhang,et al.  A phase field model for vesicle-substrate adhesion , 2009, J. Comput. Phys..

[22]  Donald M. Anderson,et al.  A diffuse-interface description of internal waves in a near-critical fluid , 1997 .

[23]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[24]  Daniel D. Joseph,et al.  Oscillatory instability in a Bénard problem of two fluids , 1985 .

[25]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[26]  K. Cliffe,et al.  Two-fluid Marangoni--Bénard convection with a deformable interface , 2002 .

[27]  Ping Lin A Sequential Regularization Method for Time-Dependent Incompressible Navier--Stokes Equations , 1997 .

[28]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[29]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[30]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[31]  J. Cahn,et al.  A Microscopic Theory for Domain Wall Motion and Its Experimental Verification in Fe‐Al Alloy Domain Growth Kinetics , 1977 .

[32]  M. Block,et al.  Surface Tension as the Cause of Bénard Cells and Surface Deformation in a Liquid Film , 1956, Nature.

[33]  J. Pearson,et al.  On convection cells induced by surface tension , 1958, Journal of Fluid Mechanics.

[34]  M. Velarde,et al.  Onset of oscillatory interfacial instability and wave motions in Bénard layers , 2001 .

[35]  Jian Zhang,et al.  Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..

[36]  Huazhong Tang,et al.  An adaptive phase field method for the mixture of two incompressible fluids , 2007 .

[37]  Donald A. Nield,et al.  Surface tension and buoyancy effects in cellular convection , 1964, Journal of Fluid Mechanics.

[38]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[39]  P. Sheng,et al.  Molecular Hydrodynamics of the Moving Contact Line in Two-Phase Immiscible Flows , 2005, cond-mat/0510403.

[40]  G. E. Mase,et al.  Continuum Mechanics for Engineers , 1991 .

[41]  William C. Reynolds,et al.  Thermal instabilities in two-fluid horizontal layers , 1972, Journal of Fluid Mechanics.

[42]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[43]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[44]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[45]  F. Busse,et al.  A theoretical and experimental study of double-layer convection , 1989, Journal of Fluid Mechanics.

[46]  S. R. Palit Thermodynamic Interpretation of the Eötvös Constant , 1956, Nature.

[47]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[48]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[49]  van de Fn Frans Vosse,et al.  Diffuse-interface modelling of thermocapillary flow instabilities in a Hele-Shaw cell , 2001, Journal of Fluid Mechanics.

[50]  Jie Shen,et al.  A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios , 2012, J. Comput. Phys..

[51]  David H. Sharp,et al.  Front Tracking Applied to Rayleigh–Taylor Instability , 1986 .

[52]  Qi Wang,et al.  Energy law preserving C0 finite element schemes for phase field models in two-phase flow computations , 2011, J. Comput. Phys..

[53]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[54]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[55]  Jie Shen,et al.  Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..

[56]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[57]  A. Nepomnyashchy,et al.  Interfacial Convection in Multilayer Systems , 2006 .

[58]  J. Swift,et al.  Surface tension-driven convection patterns in two liquid layers , 1999, patt-sol/9911004.

[59]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[60]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[61]  R. Narayanan,et al.  A tutorial on the Rayleigh-Marangoni-Benard problem with multiple layers and side wall effects. , 1999, Chaos.

[62]  Michael Bestehorn,et al.  Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Jinchao Xu,et al.  Phase Field Model of Thermo-Induced Marangoni Effects in the Mixtures and its Numerical Simulations with Mixed Finite Element Method , 2009 .

[64]  Yuriko Renardy,et al.  Time-dependent pattern formation for convection in two layers of immiscible liquids , 2000 .

[65]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[66]  Xiang Xu,et al.  On the General Ericksen–Leslie System: Parodi’s Relation, Well-Posedness and Stability , 2011, 1105.2180.